首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We systematize experimental data on the elemental vapor-phase synthesis of zinc oxide nanocrystal arrays on substrates. This process may yield nanostructures differing in shape and dimensions, in particular, well-aligned ZnO nanorod arrays. A model is proposed in which aligned zinc oxide nanorod arrays may grow by the vapor-liquid-solid (VLS) mechanism, and liquid zinc nanodroplets forming on the substrate surface at the beginning of the process catalyze one-dimensional growth. The VLS process is accompanied by zinc oxide deposition onto the lateral surface of the nanorods from the vapor phase. The relative rates of these processes influence the shape of the nanorods and the thickness of the polycrystalline underlayer. Optimizing the deposition conditions, one can grow uniform arrays of aligned high-quality ZnO nanorods with no catalysts and with no special substrate preparation steps.  相似文献   

2.
High-density well-aligned ZnO nanorod array was successfully synthesized on a large-area magnetron sputtering deposited Al doped ZnO film-coated Si (AZO/Si) substrate via a convenient solution method. X-ray diffraction and scanning electron microscopy show that the nanorods are well-oriented perpendicular to the substrate. The influences of the reaction temperature, time, on the size and shapes of the as-prepared ZnO nanorods (ZNs) samples have been studied. The length and diameter of the nanorods became bigger when a longer reaction time was used. When the temperature is elevated to 130 degrees C, a new conical ZNs was synthesized. Room-temperature photoluminescence (PL) spectra of all the ZnO products showed a strong ultraviolet (UV) emission. The photoluminescence from free excitons of the ZNs synthesized at higher temperature reflects the high purity and nearly defect free structure of nanorods. The well-aligned feature of the nanorod array is attributed to the nanorods' epitaxial growth from the AZO films.  相似文献   

3.
Gold islands, vapor deposited on silicon and quartz by microsphere lithography patterning, are used to nucleate arrays of ZnO nanorods. ZnO is grown on approximately 0.32 microm2 Au islands by carbothermal reduction in a tube furnace. Scanning electron microscopy (SEM) and energy dispersive atomic X-ray spectroscopy (EDS) confirm that the gold effectively controls the sites of nucleation of ZnO. Atomic force microscopy (AFM) shows that approximately 30 nm diameter nanorods grow horizontally, along the surface. Alloy droplets that are characteristic of the vapor-liquid-solid (VLS) mechanism are observed at the tips of the nanorods. The spatial growth direction of VLS catalyzed ZnO nanorods is along the substrate when they nucleate from gold islands on silicon and quartz. The energy of adhesion of the VLS droplet to the surface can account for the horizontal growth.  相似文献   

4.
Park DJ  Kim DC  Lee JY  Cho HK 《Nanotechnology》2007,18(39):395605
Epitaxial ZnO films were grown on c-plane sapphire substrates by metal-organic chemical vapor deposition using a ZnO multi-dimensional structure having the sequence of ZnO film/ZnO nanorods/sapphire. The vertically well-aligned one-dimensional ZnO nanorods were grown epitaxially on the sapphire substrate with in-plane alignment under suitable growth conditions and then used as seeds for the subsequent epitaxial ZnO layer. For the transition of the ZnO structures from the nanorods to the film, the growth temperature and working pressure were controlled, while keeping the other conditions fixed. The growth of the ZnO films on the well-aligned ZnO nanorods results in homoepitaxial growth with the identical orientation relationship along the in-plane direction as well as the same c-axis orientation. The microstructural analysis of the multi-dimensional structure and analysis of the microstructural evolution from the one-dimensional nanorods to the two-dimensional film were conducted using transmission electron microscopy.  相似文献   

5.
A promising strategy for the selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer in a low temperature solution process is described. High densities of ZnO nanorods were grown over a large area and most ZnO nanorods were vertically well-aligned on graphene. Furthermore, selective growth of ZnO nanorods on graphene was realized by applying a simple mechanical treatment, since ZnO nanorods formed on graphene are mechanically stable on an atomic level. These results were confirmed by first principles calculations which showed that the ZnO-graphene binding has a low destabilization energy. In addition, it was found that ZnO nanorods grown on SiO2/Si with a graphene buffer layer have better optical properties than ZnO nanorods grown on bare SiO2/Si. The nanostructured ZnO-graphene materials have promising applications in future flexible electronic and optical devices.  相似文献   

6.
We demonstrate the influence of charges near the substrate surface on vertically aligned ZnO nanorod growth. ZnO nanorods were fabricated on n-type GaN with and without H+ treatments by catalyst-free metal-organic chemical vapor deposition. The ZnO nanorods grown on n-GaN films were vertically well-aligned and had a well-ordered wurtzite structure. However, the ZnO did not form into nanorods and the crystal quality was very degraded as they were deposited on the H+ treated n-GaN films. The charge influence was also observed in the ZnO nanorod growth on sapphire substrates. These results implied that the charges near the substrate surface dominantly affected on the crystalization and formation of ZnO nanorods.  相似文献   

7.
We demonstrate the influence of charges near the substrate surface on vertically aligned ZnO nanorod growth. ZnO nanorods were fabricated on n-type GaN with and without H+ treatments by catalyst-free metal-organic chemical vapor deposition. The ZnO nanorods grown on n-GaN films were vertically well-aligned and had a well-ordered wurtzite structure. However, the ZnO did not form into nanorods and the crystal quality was very degraded as they were deposited on the H+ treated n-GaN films. The charge influence was also observed in the ZnO nanorod growth on sapphire substrates. These results implied that the charges near the substrate surface dominantly affected on the crystallization and formation of ZnO nanorods.  相似文献   

8.
Zhang XX  Zhao D  Gao M  Dong HB  Zhou WY  Xie SS 《Nanotechnology》2011,22(13):135603
Multi-stage growth of ZnO nanorod arrays has been carried out by Au-assisted chemical vapor deposition (CVD) in order to better understand and more precisely control the growth behaviors. It is evidenced that Au-catalyzed vapor-liquid-solid (VLS) growth only dominates the initial site-specific nucleation of the nanorods, while the subsequent growth is governed by a vapor-solid (VS) epitaxy mechanism. The sequential VLS and VS behaviors permit the fabrication of large-scale highly ordered arrays of ZnO nanorods with precisely tunable diameters and embedded junctions by controlling reactant concentration and nanorod top morphology. Based on the above results, two routes to fabricate ultrafine ZnO nanorod arrays are proposed and stepwise nanorod arrays with ultrafine top segment (~10 nm in diameter) have been achieved. Temperature-dependent photoluminescence (PL) and spatial resolved PL were carried out on the nanorod arrays and on individual nanorods, indicating high quality optical properties and tunable light emission along the length of the stepwise nanorods.  相似文献   

9.
Well-aligned Mn-doped ZnO nanorods were synthesized by simple radio frequency (RF) plasma deposition in the absence of extra catalysts. The synthesized nanorods having a typical average diameter of about 25 nm, were about 310 nm in length and well-aligned along the normal direction of the substrate. Magnetic measurements indicate that the nanorods are ferromagnetic at room temperature (RT). The presence of considerable shallow donor defects in the nanorods does allow possible defect mediated mechanisms (e.g., bound magnetic polarons) for mediating exchange coupling of the dopant Mn ions resulting in RT ferromagnetism.  相似文献   

10.
We have grown large-scale well-aligned ZnO nanorods/nanowires on commercial flexible graphite sheet (FGS) at low temperature via chemical vapor deposition method. The products were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The effects of the growth temperature and oxygen flow rate on the morphology of ZnO nanostructures have been investigated. The growth mechanism of ZnO is found to be a self-catalytic vapor–solid process assisted by the immiscibility of ZnO with graphite. The as-grown ZnO/FGS products show strong green emission and their photoluminescence properties can be tuned by changing growth condition or annealing treatment.  相似文献   

11.
High-density well-aligned ZnO nanorod arrays were successfully fabricated on ZnO a seed-layer coated InP (001) substrate by using pulsed laser deposition (PLD) technique without metal catalyst. SEM image showed that uniformly distributed droplet-like ZnO seed-layer was formed on the InP wafer. Well-oriented ZnO nanorods were formed perpendicular to the seed-layer coated substrate and well-separated from each other. X-ray diffraction θ-2θ scanning measurements demonstrated that the ZnO nanorods exhibited a strong c-axis orientation with high crystalline quality. The photoluminescence (PL) spectrum measurement illuminated that the ZnO nanorods produced in this work had well optical quality. The well-aligned and separated ZnO nanorods fabricated by this comparatively simple technique shed light on further applications for nanodevices.  相似文献   

12.
We have grown vertically aligned ZnO nanorods and multipods by a seeded layer assisted vapor–liquid–solid (VLS) growth process using a muffle furnace. The effect of seed layer, substrate temperature and substrate material has been studied systematically for the growth of high quality aligned nanorods. The structural analysis on the aligned nanorods shows c-axis oriented aligned growth by homoepitaxy. High crystallinity and highly aligned ZnO nanorods are obtained for growth temperature of 850–900 °C. Depending on the thickness of the ZnO seed layer and local temperature on the substrate, some region of a substrate show ZnO tetrapod, hexapods and multipods, in addition to the vertically aligned nanorods. Raman scattering studies on the aligned nanorods show distinct mode at ∼438 cm−1, confirming the hexagonal wurtzite phase of the nanorods. Room temperature photoluminescence studies show strong near band edge emission at ∼378 nm for aligned nanorods, while the non-aligned nanorods show only defect-emission band at ∼500 nm. ZnO nanorods grown without the seed layer were found to be non-aligned and are of much inferior quality. Possible growth mechanism for the seeded layer grown aligned nanorods is discussed.  相似文献   

13.
Lee HK  Kim MS  Yu JS 《Nanotechnology》2011,22(44):445602
We report the structural and optical properties of ZnO nanorod arrays (NRAs) grown by an electrochemical deposition process. The ZnO NRAs were grown on indium tin oxide (ITO) coated glass substrates with a thin sputtered Al-doped ZnO (AZO) seed layer and compared with ones directly grown without the seed layer. The growth condition dependence of ZnO NRAs was investigated for various synthetic parameters. The morphology and density of the ZnO NRAs were accordingly controlled by means of zinc nitrate concentration and growth time. From photoluminescence results, the ultraviolet emission was significantly enhanced after thermal treatment. For ZnO NRAs grown on ITO glass without the seed layer, the diffuse transmittance was enhanced despite the reduction in the total transmittance, indicating a high haze value. By using a thin AZO seed layer, the well-aligned ZnO NRAs on AZO/ITO glass are controllably and reproducibly synthesized by varying the growth parameters, exhibiting a total transmittance higher than 91% in the visible wavelength range as well as good optical and crystal quality.  相似文献   

14.
In this study, we prepared ZnO nanorods by a sonochemical method using a zinc acetate dihydrate as a new precursor. Well-aligned high-quality ZnO nanorods were synthesized on FTO glass by the sonochemical decomposition of zinc acetate dihydrate using a ZnO thin-film as the catalytic layer. The ZnO thin-films were deposited on the FTO glass by a sputtering method. To investigate their catalytic effects on the ZnO nanorods, catalytic ZnO thin-films of 20 nm, 40 nm, and 60 nm thickness were prepared by adjusting the sputtering time. The ZnO nanorods grown on catalytic layers with different thicknesses were characterized by SEM, XRD, and PL. The ZnO nanorods grown on the catalytic layer of 40 nm thickness show the best crystal and spatial orientation and as a result display the best optical properties. It was found that a catalytic ZnO thin-film of 40 nm in thickness yields well-aligned high-quality ZnO nanorods, due to its small surface roughness and structural strain.  相似文献   

15.
使用化学气相沉积法在a面蓝宝石衬底上同步外延生长氧化锌(ZnO)竖直纳米棒阵列和薄膜,研究了阵列和薄膜的光电化学性能。结果表明,纳米结构中的竖直单晶纳米棒有六棱柱形和圆柱形,其底部ZnO薄膜使竖直纳米棒互相联通。与ZnO纳米薄膜的比较表明,这种纳米结构具有优异的光电化学性能,其入射光电流效率是ZnO纳米薄膜的2.4倍;光能转化效率是ZnO纳米薄膜的5倍。这种纳米结构优异的光电化学性能,可归因于其高表面积-体积比以及其底部薄膜提供的载流子传输通道。本文分析了这种纳米结构的生长过程,提出了协同生长机理:Au液化吸收气氛中的Zn原子生成合金,合金液滴过饱和后ZnO开始成核,随后在衬底表面生成了ZnO薄膜。同时,还发生了Zn自催化的气-固(VS)生长和Au催化的气-液-固(VLS)生长,分别生成六棱柱纳米棒和圆柱形纳米棒,制备出底部由薄膜连接的竖直纳米棒阵列。  相似文献   

16.
Photoelectronic characteristics are investigated in well-aligned MgO-coated ZnO nanorods (MgO/ZnO nanocables) grown on Si substrates buffered with ZnO film at a low temperature by solution techniques. Transmission electron microscopy shows that a rough surface was observed for the MgO-coated ZnO nanorods due to deposition of MgO nanoparticles on the surface of the ZnO nanorods. However, after annealed at high temperatures, the surface of the MgO-coated ZnO nanorods was flattened to form Mg-doped ZnO nanorods. Photoluminescence spectra of Mg-doped ZnO nanorods displayed a blue shift of the near-band-edge emission with increasing annealing temperature indicative of an increase in the band gap of the MgZnO alloy due to diffusion of the Mg atoms into the ZnO nanorods. In contrast, no blue shift was detected for the samples annealed in H2/N2 (5%/95%) reduction atmosphere but a blue emission was detected at 800 degrees C, indicating that MgO diffusion process may produce a new luminescent center to emit the blue emission in H2/N2 reduction atmosphere.  相似文献   

17.
This paper reports additive-free, reproducible, low-temperature solution-based process for the preparation of crystalline ZnO nanorods by homogeneous precipitation from zinc acetate. Also, ZnO nanorod structured dye sensitized solar cells using ruthenium dye (Z907) have been fabricated and characterized. The formation and growth of zinc oxide nanorods are successfully achieved. We analyzed three different synthesis method using solution phase, autoclave and microwave. The calcination effects on the morphology of ZnO nanorods are also investigated. Analysis of ZnO nanorods shows that calcination at lower temperature is resulted in a nanorod growth. Additive-free, well-aligned ZnO nanorods are obtained with the length of 330–558 nm and diameters of 14–36 nm. The XRD, SEM, and PL spectra have been provided for the characterization of ZnO nanorods. Microwave-assisted ZnO nanostructured dye sensitized solar cell devices yielded a short-circuit photocurrent density of 6.60 mA/cm2, an open-circuit voltage of 600 mV, and a fill factor of 0.59, corresponding to an overall conversion efficiency of 2.35% under standard AM 1.5 sun light.  相似文献   

18.
Vertical well-aligned Cu-doped ZnO nanorods were successfully synthesized by chemical bath deposition (CBD) method on low cost and flexible polyethylene naphthalate (PEN) substrate. The structural and optical investigations exhibited the high quality of the Cu-doped ZnO nanorods on a flexible PEN substrate. The metal-semiconductor-metal (MSM) configuration was used to fabricate UV photodetector based on the Cu-doped ZnO nanorods grown on PEN substrate. Under a 5 V applied bias, the values of dark current and photocurrent of the Cu-doped ZnO nanorods photodetector were 14.9 µA and 3.27 mA, respectively. Meanwhile, calculated photocurrent gain of the UV photodetector was 219 at 5 V bias voltage. Upon exposure to 365 nm UV light, the UV device exhibited fast response time and recovery time of 0.317 and 0.212 s, respectively, at a bias voltage of 5 V.  相似文献   

19.
Uniform ZnO nanorods were synthesized in high-yield by using metal zinc powder as zinc source via a one-step facile hydrothermal process under mild conditions, in which cetyltrimethylammonium bromide (CTAB) with ordered chain structures acted as the conversion of Zn powder into ZnO nanorods. The characterization results show that the as-synthesized products were structurally uniform and have diameters of 40–80 nm. Gas sensing properties studies show that ZnO nanorods exhibit more excellent response and stability to ethanol than that of ZnO nanoparticles. After working continuously for 50 days, the sensitivity of ZnO nanorods still retained 7.3, whereas, the ZnO nanoparticles showed only 1.0. The facile preparation method and the improved properties derived from typical rods-like nanostructure are significant for the future applications of gas sensing material.  相似文献   

20.
本研究设计并制备了一种微流控芯片并在其中水热合成了氧化锌(ZnO)纳米棒。利用扫描电子显微镜(SEM)和X射线衍射(XRD)研究了合成条件对ZnO纳米棒的形貌和晶体结构的影响。结果表明, 在微流控芯片中可制备得到致密的ZnO纳米棒, 其直径和长度随加热方式和制备时间的变化而改变。对比研究不同加热方式制备的ZnO纳米棒阵列检测异硫氰酸荧光素标记的羊抗牛IgG的性能, 发现局部加热方式制备的ZnO纳米棒检测荧光素标记蛋白的性能更佳, 在10 pg/mL~1 μg/mL范围内线性良好, 相关系数为0.99209。在此基础上, 用局部加热制备的ZnO纳米棒检测人甲胎蛋白(AFP), 其最低检测限可达1 pg/mL。这些结果表明, 微通道中合成的ZnO纳米棒适用于多通道荧光检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号