首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
SiC power MOSFETs designed for blocking voltages of 10 kV and higher face the problem of high drift layer resistance that gives rise to a high internal power dissipation in the ON -state. For this reason, the ON-state current density must be severely restricted to keep the power dissipation below the package limit. We have designed, optimized, and fabricated high-voltage SiC p-channel doubly-implanted metal-oxide-semiconductor insulated gate bipolar transistors (IGBTs) on 20-kV blocking layers for use as the next generation of power switches. These IGBTs exhibit significant conductivity modulation in the drift layer, which reduces the ON-state resistance. Assuming a 300 W/cm2 power package limit, the maximum currents of the experimental IGBTs are 1.2x and 2.1x higher than the theoretical maximum current of a 20-kV MOSFET at room temperature and 177 degC, respectively.  相似文献   

2.
A new design approach achieving very high conversion efficiency in low-voltage high-power isolated boost dc–dc converters is presented. The transformer eddy-current and proximity effects are analyzed, demonstrating that an extensive interleaving of primary and secondary windings is needed to avoid high winding losses. The analysis of transformer leakage inductance reveals that extremely low leakage inductance can be achieved, allowing stored energy to be dissipated. Power MOSFETs fully rated for repetitive avalanches allow primary-side voltage clamp circuits to be eliminated. The oversizing of the primary-switch voltage rating can thus be avoided, significantly reducing switch-conduction losses. Finally, silicon carbide rectifying diodes allow fast diode turn-off, further reducing losses. Detailed test results from a 1.5-kW full-bridge boost dc–dc converter verify the theoretical analysis and demonstrate very high conversion efficiency. The efficiency at minimum input voltage and maximum power is 96.8%. The maximum efficiency of the proposed converter is 98%.   相似文献   

3.
This paper describes a bidirectional isolated dc-dc converter considered as a core circuit of 3.3-kV/6.6-kV high-power-density power conversion systems in the next generation. The dc-dc converter is intended to use power switching devices based on silicon carbide (SiC) and/or gallium nitride, which will be available on the market in the near future. A 350-V, 10-kW and 20 kHz dc-dc converter is designed, constructed and tested. It consists of two single-phase full-bridge converters with the latest trench-gate insulated gate bipolar transistors and a 20-kHz transformer with a nano-crystalline soft-magnetic material core and litz wires. The transformer plays an essential role in achieving galvanic isolation between the two full-bridge converters. The overall efficiency from the dc-input to dc-output terminals is accurately measured to be as high as 97%, excluding gate drive and control circuit losses from the whole loss. Moreover, loss analysis is carried out to estimate effectiveness in using SiC-based power switching devices. Loss analysis clarifies that the use of SiC-based power devices may bring a significant reduction in conducting and switching losses to the dc-dc converter. As a result, the overall efficiency may reach 99% or higher  相似文献   

4.
The DC analysis of a series-resonant converter operating above resonant frequency is presented. The results are used to analyze the current form factor and its effect on the efficiency. The selection of the switching frequency to maximize the efficiency is considered. The derived expressions are generalized and can be applied to calculations in any of the switching modes for a series-resonant circuit. For switching frequencies higher than the resonant frequency, an area of more efficient operation is indicated which will aid in the design of this class of converters and power supplies. It is pointed out that (especially for power MOSFETs where ohmic losses dominate) it is more attractive to select switching frequencies that are higher than the resonant frequency because of the possibility of nondissipative snubbers. Slowing down the rise of the gate voltage and, hence, the slow decrease of ON resistance during turn-on is also not a drawback to high-frequency switching. Because of this safer operation, the standard intrinsic diode of the power MOSFET could be used at high frequencies instead of the more expensive FREDFET  相似文献   

5.
DC/DC converters to power future CPU cores mandate low-voltage power metal-oxide semiconductor field-effect transistors (MOSFETs) with ultra low on-resistance and gate charge. Conventional vertical trench MOSFETs cannot meet the challenge. In this paper, we introduce an alternative device solution, the large-area lateral power MOSFET with a unique metal interconnect scheme and a chip-scale package. We have designed and fabricated a family of lateral power MOSFETs including a sub-10 V class power MOSFET with a record-low R/sub DS(ON)/ of 1m/spl Omega/ at a gate voltage of 6V, approximately 50% of the lowest R/sub DS(ON)/ previously reported. The new device has a total gate charge Q/sub g/ of 22nC at 4.5V and a performance figures of merit of less than 30m/spl Omega/-nC, a 3/spl times/ improvement over the state of the art trench MOSFETs. This new MOSFET was used in a 100-W dc/dc converter as the synchronous rectifiers to achieve a 3.5-MHz pulse-width modulation switching frequency, 97%-99% efficiency, and a power density of 970W/in/sup 3/. The new lateral MOSEFT technology offers a viable solution for the next-generation, multimegahertz, high-density dc/dc converters for future CPU cores and many other high-performance power management applications.  相似文献   

6.
Zero-current (ZC) resonant switches allow one to reduce the switching losses in high-frequency DC/DC switched mode power supplies. ZC resonant switches can be either unidirectional (half-wave) or bidirectional (full-wave). If a conventional power MOSFET is chosen to implement the ZC resonant switch, the turn-on of the slow intrinsic diode has to be avoided. This is usually done with a fast blocking diode, which is connected in series with the MOSFET. Furthermore, an antiparallel fast diode is added when a FW ZC resonant switch is required. The conduction losses are relevant in this implementation, owing to the threshold voltage and to the series resistances of the two diodes. In this paper, a low-conduction-loss FW ZC resonant switch has been proposed. Its implementation is based on a power MOSFET and a single antiparallel Schottky diode. The possibility of an implementation with a power MOSFET alone is also discussed. A control circuit suitable for the proposed ZC resonant switch has been described. The experimental results obtained from a ZCS-QR buck converter are discussed.<>  相似文献   

7.
This article presents a comparative study between SiC MOSFETs and Si IGBTs regarding changes in their junction temperature in a PV inverter application. The estimation of these variations is made by introducing the current mission profiles extracted from a photovoltaic plant over one year into a calculation tool. The latter is based on a losses model and a thermal model including a coupling between them. The calculation of the losses in SiC MOSFETs in the 3rd quadrant is detailed. The results are the mission profiles of the junction temperature of semiconductors, which allow for determining and comparing the thermal constraints in SiC MOSFET and Si IGBT power modules.  相似文献   

8.
A passive lossless snubber cell is proposed to improve the turn-on and turnoff transients of the MOSFETs in nonisolated pulsewidth modulated (PWM) DC/DC converters. Switching losses and EMI noise are reduced by restricting di/dt of the reverse-recovery current and dv/dt of the drain-source voltage. The MOSFET operates at zero-voltage-switching (ZVS) turnoff and near zero-current-switching (ZCS) turn-on. The freewheeling diode is also commutated under ZVS. As an example, operation principles, theoretical analysis, relevant equations, and experimental results of a boost converter equipped with the proposed snubber cell are presented in detail. Efficiency of 96% has also been measured in the experimental results reported for a 1 kW 100 kHz prototype in the laboratory, Six basic nonisolated PWM DC/DC converters (buck, boost, buck-boost, Cuk, Sepic, and Zeta) equipped with the proposed general snubber cells are also shown in this paper  相似文献   

9.
This paper proposes a variable-frequency zero-voltage-switching (ZVS) three-level LCC resonant converter that is able to utilize the parasitic components of the high turns-ratio transformer. By applying a three-level structure to the primary side, the voltage stress of the primary switches is half of the input voltage. Low-voltage MOSFETs with better performance can be used in this converter, and zero-current-switching (ZCS) is achieved for rectifier diodes. By applying a magnetic integration technique, only one magnetic component is required in this converter. The power factor concept of resonant converters is proposed and analyzed, and a novel constant power-factor control scheme is proposed. Based on this control strategy, the circulating energy of resonant converters is considerably reduced. High efficiency can be obtained for high-voltage high-power charging applications. The operation principle of the converter is analyzed and verified on a 700-kHz, 3.7-kW prototype, with which a power density of 72 ${hbox {W/inch}}^{3}$ is achieved.   相似文献   

10.
A soft-commutating method and control scheme for an isolated boost full bridge converter is proposed in this paper to implement dual operation of the well-known soft-switching full bridge dc/dc buck converter for bidirectional high power applications. It provides a unique commutation logic to minimize a mismatch between current in the current-fed inductor and current in the leakage inductance of the transformer when commutation takes place, significantly reducing the power rating for a voltage clamping snubber and enabling use of a simple passive clamped snubber. To minimize the mismatch, the method and control scheme utilizes the resonant tank and freewheeling path in the existing full bridge inverter at the voltage-fed side to preset the current in the leakage inductance of the transformer in a resonant manner. Zero-voltage-switching is also achieved for all the switches at the voltage-fed side inverter in boost mode operation. The proposed soft-commutating method is verified through boost mode operation of a 3-kW bidirectional isolated full bridge dc/dc converter developed for fuel cell electric vehicle applications. The tested result verified the isolated boost converter can operate at an input voltage of 8.5–15V and an output voltage of 250–420V with a peak efficiency of 93% and an average efficiency of 88% at 55-kHz switching frequency with 72$^circ$C automotive coolant.  相似文献   

11.
This paper focuses on a new three-phase high power current-fed dc/dc converter with an active clamp. A three-phase dc/dc converter with high efficiency and voltage boosting capability is designed for use in the interface between a low-voltage fuel-cell source and a high-voltage dc bus for inverters. Zero-voltage switching in all active switches is achieved through using a common active clamp branch, and zero current switching in the rectifier diodes is achieved through discontinuous current conduction in the secondary side. Further, the converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Moreover, a delta-delta connection on the three-phase transformer provides parallel current paths and reduces conduction losses in the transformer windings. An efficiency of above 93% is achieved through both improvements in the switching and through reducing conduction losses. A high voltage ratio is achieved by combining inherent voltage boost characteristics of the current-fed converter and the transformer turns ratio. The proposed converter and three-phase PWM strategy is analyzed, simulated, and implemented in hardware. Experimental results are obtained on a 500-W prototype unit, with all of the design verified and analyzed.   相似文献   

12.
根据传统硬开关电源引起的不良影响,提出了一种新型软开关BUCK变换器,使得高低桥MOSFET管都能在不管是轻负载或者重负载情况下达到ZVS状态.在连续导电模式(CCM)和高负载电流情况下,上桥MOSFET管开通,下桥MOSFET管侧的二极管在死区时间内导电,这样就造成了上桥MOSFET管的开关损耗.新型软开关BUCK变换器在传统BUCK变换器的基础上加入了电感和电容,在外加电感电容的情况下,在CCM下的死区时间内的电感电流可以有效地从下桥二极管整流到上桥二极管中.根据仿真结果和工作模式分析验证其性能.  相似文献   

13.
The performance of a 600 V, 4 A silicon carbide (SiC) Schottky diode (Infineon SDP04S60) is experimentally evaluated. A 300 W boost power factor corrector (PFC) with average current mode control is considered as a key application. Measurements of overall efficiency, switch and diode losses, and conducted electromagnetic interference (EMI) are performed both with the SiC diode and with two ultra-fast, soft-recovery, silicon power diodes, namely the RURD460 and the presented STTH5R06D. The paper compares the results to quantify the impact of the recovery current reduction provided by SiC diode on these key aspects of the converter behavior. Based on the experimental results, the paper shows that the use of SiC diodes in PFC designs may only be justified in high switching frequency applications.  相似文献   

14.
This paper presents a magnetic integration approach that reduces the number of magnetic components in a power supply by integrating magnetic components in two conversion stages. Specifically, in the proposed approach, a single transformer is used to implement the continuous-conduction-mode boost power-factor-corrected (PFC) converter and the dc/dc flyback converter. The integrated boost and flyback converters offer soft switching of all semiconductor switches including a controlled di/dt turn-off rate of the boost rectifier. The performance of the proposed approach was evaluated on a 150-kHz, 450-W, universal-line range boost PFC converter with 12-V/2.2-A integrated stand-by flyback converter.  相似文献   

15.
A 175-to-350 V hard-switched boost converter was constructed using a high-voltage GaN high-electron-mobility transistor grown on SiC substrate. The high speed and low on-resistance of the wide-band-gap device enabled extremely fast switching transients and low losses, resulting in a high conversion efficiency of 97.8% with 300-W output power at 1 MHz. The maximum efficiency was 98.0% at 214-W output power, well exceeding the state of the art of Si-based converters at similar frequencies.  相似文献   

16.
Synchronous rectifiers used in high frequency, low output voltage applications are power MOSFETs specially designed to replace the usual output Schottky diodes in order to reduce converter losses. This paper deals with the analysis and design optimization of a synchronous rectifier suitable for applications of 1 to 10 MHz switching-mode power supplies. Three different MOSFET structures were studied and evaluated through detailed 2-dimensional device simulations. The internal parameters are optimized against three major performance factors, namely (1) the recovery time of the body diode, (2) the product of on-state resistance and input capacitance, i.e., the loss factor, and (3) the breakdown voltage of the body diode. Based on the evaluation, the UMOS structure produces the lowest RC loss factor and the shortest body diode reverse recovery. The final design optimization of the UMOS was then carried out and an optimized device is presented as the final design  相似文献   

17.
A high-frequency link parallel resonant DC/DC power converter (PRC) operating in the lagging power factor mode with the resonating capacitor on the secondary side of the high-frequency (HF) transformer is analyzed for operation in the discontinuous capacitor voltage mode (DCVM) using a state-space approach. Converter equations are solved for operation under steady-state condition. Based on the analysis, design curves are obtained for DCVM operation. A method of obtaining the optimum operating point under certain constraints for DCVM operation is developed and is used to develop a simple design procedure. Experimental results obtained with a MOSFET-based 1 kW PRC are presented to support the theory  相似文献   

18.
A compact circuit simulator model is used to describe the performance of a 2-kV, 5-A 4-H silicon carbide (SiC) power DiMOSFET and to perform a detailed comparison with the performance of a widely used 400-V, 5-A Si power MOSFET. The model's channel current expressions are unique in that they include the channel regions at the corners of the square or hexagonal cells that turn on at lower gate voltages and the enhanced linear region transconductance due to diffusion in the nonuniformly doped channel. It is shown that the model accurately describes the static and dynamic performance of both the Si and SiC devices and that the diffusion-enhanced channel conductance is essential to describe the SiC DiMOSFET on-state characteristics. The detailed device comparisons reveal that both the on-state performance and switching performance at 25degC are similar between the 400-V Si and 2-kV SiC MOSFETs, with the exception that the SiC device requires twice the gate drive voltage. The main difference between the devices is that the SiC has a five times higher voltage rating without an increase in the specific on-resistance. At higher temperatures (above 100degC), the Si device has a severe reduction in conduction capability, whereas the SiC on-resistance is only minimally affected  相似文献   

19.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

20.
Transistor dc-dc converters which employ a resonant circuit are described. A resonant circuit is driven with square waves of current or voltage, and by adjusting the frequency around the resonant point, the voltage on the resonant components can be adjusted to any practical voltage level. By rectifying the voltage across the resonant elements, a dc voltage is obtained which can be either higher or lower than the input dc voltage to the converter. Thus, the converter can operate in either the step-up or step-down mode. In addition, the switching losses in the inverter devices and rectifiers are extremely low due to the sine waves that occur from the use of a resonant circuit (as opposed to square waves in a conventional converter); also, easier EMI filtering should result. In the voltage input version, the converter is able to use the parasitic diode associated with an FET or monolithic Darlington, while in the current input version, the converter needs the inverse blocking capability which can be obtained with an IGT or GTO device. A low-power breadboard operating at 200-300 kHz has been built. Two typical application areas are switching power supplies and battery chargers. The converter circuits offer improvements over conventional circuits due to their high efficiency (low switching losses), small reactive components (high-frequency operation), and their step-up/stepdown ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号