首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   

2.
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added.  相似文献   

3.
Zirconium diboride ceramics as one of the main members of ultrahigh-temperature ceramics are capable of being used as structural components at ultrahigh temperatures. Entropy adjusting is a newly developed approach to improving the properties of ceramics. In this work, a series of ZrB2-based solid solution ceramics with different mixing entropies, formulated (ZrxTiyNbyTay)B2 (x = .25, .85, .925, .9625, 1; x + 3y = 1), were prepared by adjusting the content of other diborides. Diboride solid solution powders were synthesized by boro/carbothermal reduction process and then densified by spark plasma sintering. The results show that the formation of a single-phase solid solution is independent of the mixing entropy in (ZrxTiyNbyTay)B2 system. The addition of other diborides into ZrB2 is beneficial to reduce the particle size of the synthesized powder and promote the densification process. The dense sintered samples with higher mixing entropy have finer grain size, higher hardness, and modulus. The (Zr0.25Ti0.25Nb0.25Ta0.25)B2 ceramic has the highest hardness of 31 GPa and a modulus of 682 GPa. Severe lattice distortion in samples with higher mixing entropy will result in increased phonon scattering and lower thermal conductivity.  相似文献   

4.
Mechanical properties and microstructure were compared for zirconium diboride and two zirconium diboride solid solutions containing 3 and 6 at% tantalum diboride. X-ray diffraction indicated that the ceramics were nearly phase-pure and that tantalum dissolved into the ZrB2 lattice to form (Zr,Ta)B2 solid solutions. Microstructural analysis indicated that samples achieved nearly full relative density with average grain sizes that ranged from 3?5 μm. The three compositions had similar values of Young’s modulus (510?531 GPa), shear modulus (225?228 GPa), Vickers hardness (15.2–16.4 GPa), and flexural strength (391?452 MPa). Fracture toughness ranged from 2.6 to 3.7 MPa m1/2 and with increasing tantalum content, the fracture mode changed from predominantly intergranular to predominantly transgranular. Diboride solid solution materials had comparable properties to the single metal diboride, but differences in microstructure, secondary phases, and strain state among the three ceramics partially obscured the actual effects of the solid solution on fracture behavior.  相似文献   

5.
Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra high temperature ceramics (UHTCs) have been measured at temperatures from room temperature to 2000 °C and compared with SiC-doped ZrB2- and HfB2-based UHTCs and monolithic ZrB2 and HfB2. Thermal conductivities of La2O3-doped UHTCs remain constant around 55–60 W/mK from 1500 °C to 1900 °C while SiC-doped UHTCs showed a trend to decreasing values over this range.  相似文献   

6.
Samarium-doped zirconium diboride/silicon carbide (Sm-ZBS) ceramics possess an emittance of 0.9 at 1600 °C and develop oxide scales that have excellent ablation performance. This study investigates the oxide scale development of 3 mol% doped Sm-ZBS which contains 80 vol% ZrB2 and 20 vol% SiC when exposed to temperatures in excess of 1800 °C in an oxidizing atmosphere. Samples were prepared via chemical infiltration of samarium nitrate into spray-dried powders of 80 vol.% ZrB2/20 vol.% SiC; powders were then pressed into billets and sintered without pressure. Samples cut from these billets were then oxidized for 10, 60, and 300 s, respectively, using an oxyacetylene torch. A Sm-depletion region was observed and believed to form due to glass transport to the surface. X-ray diffraction was used to determine the sequence of oxidation of Sm-ZBS, beginning with the formation of ZrO2 and Sm2O3. The final oxide scale was determined to be c1-Sm0.2Zr0.8O1.9, with a melting temperature exceeding 2500 °C. SEM and EDS were also used to investigate microstructural formation due to the bursting of convection cells.  相似文献   

7.
A novel ZrB2–Ti3AlC2 composite was densified using spark plasma sintering at 1900 °C under pressure of 30 MPa for 7 min. The effect of Ti3AlC2 MAX phase on the densification behavior, microstructural evolutions, phase arrangement, and mechanical properties of the composite were investigated. The phase analysis and microstructural studies revealed the decomposition of the MAX phase at the initial steps of the SPS process. The structural characteristics and surface morphology of the in-situ synthesized reinforcements were verified using X-ray diffraction and scanning electron microscopy, respectively. The formation mechanism of each reinforcement phase was also investigated using thermodynamical assessments. The prepared ZrB2–Ti3AlC2 composite not only possessed a near fully-dense characteristic having an excellent hardness of 31 GPa, but also unexpectedly presented high fracture toughness. The indentation fracture toughness of the composite was calculated as 7.8 MPa m1/2, which is unprecedented compared with the same class of hard ZrB2-based composites. Indeed, the superior mechanical properties of the composite achieved in this study was obtained by the homogenous distribution of Al-based reinforcements, formation of hard interfacial ZrC grains, and solid solutions provided by Ti-based phases. The correlations between the phase arrangement, microstructure, and the attained mechanical properties of the composite were comprehensively discussed.  相似文献   

8.
SiC/20?wt% ZrB2 composite ceramics were fabricated via pressureless solid phase sintering in argon atmosphere at different temperature. The effect of sintering temperature on microstructure, electrical properties and mechanical properties of SiC/ZrB2 ceramics was investigated. Electrical resistivity exhibits twice significant decreases with increasing sintering temperature. The first decrease from 1900?°C to 2000?°C is attributed to the obvious decrease of continuous pore channels in as-sintered materials. The second decrease from 2100?°C to 2200?°C results from the improvement of carbon crystallization and the disappearance of amorphous layers enveloping ZrB2 grains. Additionally, the increase of sintered density with increasing temperature caused greatly advance of flexural strength, elastic modulus and Vickers hardness. But excessive temperature is detrimental to flexural strength because of SiC grain growth.  相似文献   

9.
《Ceramics International》2016,42(15):16474-16479
A series of ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol% were prepared by reactive hot-pressing using Zr, B4C and SiC as raw materials. Self-propagating high-temperature synthesis (SHS) occurred, and ZrC grains connected each other to form a layered structure when the SiC content is below 20 vol%. The evolution of microstructure has been discussed via reaction processes. The composite with 10 vol% SiC presents the most excellent mechanical properties (four-point bending strength: 828.6±49.9 MPa, Vickers hardness: 19.9±0.2 GPa) and finest grain size (ZrB2: 1.52 µm, ZrC: 1.07 µm, SiC: 0.79 µm) among ZrB2-ZrC-SiC composites with various SiC content from 0 to 20 vol%.  相似文献   

10.
The work is dedicated to researching into combustion kinetics and mechanism as well as the stages of the chemical transformations during self-propagating high-temperature synthesis of ZrB2-SiC based ceramics. Dependences of the combustion temperature and rate on the initial temperature (T0) have been studied. It has been shown that the stages of the chemical reactions of ZrB2 diboride and SiC carbide formation do not change within the range of T0?=?298–700?К. The effective activation energy of the combustion process amounted to 170–270?kJ/mol, from which it has been concluded that chemical interaction through the melt plays a leading role. The stages of the chemical transformations in the combustion wave have been studied by dynamic X-ray diffraction. First, ZrB2 phase forms from Zr-Si melt saturated with boron, and SiC phase is registered later. The SHS method has successfully been used in order to obtain ZrB2-SiC composite powders and compact ceramics with a silicon carbide content of 25–75%. The ceramics are characterized by a residual porosity of 1.5%, hardness up to 25?GPa, the elastic modulus of 318?±?21?GPa, elastic recovery of 36% and thermal conductivity of 54.9?W/(m?×?K) at Troom.  相似文献   

11.
CaZrO3/ZrB2复合材料的无压烧结试验研究   总被引:1,自引:0,他引:1  
CaZrO3与(0-30vol.%)ZrB2在常压下可以直接烧结。CaZrO3基质中引入ZrB2,降低了材料的相对密度,不利于材料的致密化烧结。但ZrB2的引入抑制了CaZrO3晶粒度的长大,提高了材料的抗折强度。通过显微结构观察,认为其强化机制是ZrB2颗粒的弥散强化作用。CaZrO3/ZrB2复合材料的显微结构特征为粒状堆积结构。  相似文献   

12.
ZrB2/SiC composite ceramics were fabricated to improve the electrical conductive properties of SiC matrix. The debinding and sintering temperatures were determined by computation of Gibbs free energy. As a result, all the samples have the relative density above 99%, and have excellent mechanical and electrical properties. The effects of ZrB2 content on the microstructure, mechanical and electrical properties were systematically studied. With increasing ZrB2 content, as-prepared composites show great improvement in their mechanical properties. Importantly, the introduction of ZrB2 weakened varistor nonlinear characteristic of composite and reduced its resistivity. The reason is the evolution of grain boundary in conductive paths. The sharp decrease of resistivity indicates the formation of percolation paths. The percolation threshold at 1?mA?cm?2 obtained via percolation model is 10.7963?vol% (19.7098?wt%) ZrB2. This value is much less than conventional composites, because the percolation path originates from grain boundary breakdown other than continuous conductor chains.  相似文献   

13.
Rod-like ZrB2 powders were synthesised at 1500°C in vacuum by boro/carbothermal reduction using ZrO2, B4C and graphite as the starting materials. During the heating process, the ZrB2 grains primarily grow along the c axis to form a rod-like morphology without any heterogeneous catalyst. The final products are pure rod-like ZrB2 particles, which are thought to be promising starting powders to prepare high performance ultrahigh temperature ceramics with unique microstructures such as textured one through tape casting process.  相似文献   

14.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   

15.
This study systematically correlates processing with quantitative microstructural information over an extended compositional range for ZrB2-MoSi2 ceramics, with MoSi2 contents ranging from 5 to 70 vol% and diboride starting particle sizes ranging from 3 to 12 μm. Fifteen different ceramics were hot pressed between 1750 and 1925 °C. Plastic deformation of MoSi2 contributed to initial densification, but some of the MoSi2 decomposed during the later stages of hot pressing. Finer diboride particles required lower temperatures to densify (1750 to 1850 °C) compared to coarser diboride particles (1900 °C). Increasing MoSi2 content led to a decrease in sintering temperature. As MoSi2 content increased, ZrB2 grain size decreased and MoSi2 cluster size increased. Starting powders with lower impurity contents and isothermal vacuum holds contributed to lower oxide impurity contents in the final ceramics. A diboride core-shell microstructure involving (Zr1-x,Mox)B2 solid solutions formed in all compositions with Mo contents in the solid solution shells ranging from 3 to 6 at%.This work identified specific relationships between starting composition, processing conditions and final microstructure, showing how microstructure and properties could be tailored by processing. The outcomes of this extensive study will serve as guidelines for the design of other structural ceramics that have to attain determinate thermo-mechanical properties for targeted applications.  相似文献   

16.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

17.
《Ceramics International》2017,43(18):16457-16461
ZrB2-SiC powders with different amounts of SiC (10–30 wt%) were in-situ synthesized at 1600 °C for 90 min in Ar atmosphere. Effects of SiC addition on the formation of ZrB2 via carbothermal reduction of ZrO2, H3BO3 and carbon black were investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and transmission electron microscope (TEM). The grain size of ZrB2 in final powders decreased with adding SiC. Columnar ZrB2 and granular SiC were combined interactively when the SiC content was 25 wt%. Layer-like hexagonal SiC was obtained in the product containing 30 wt% SiC, whereas the ZrB2 grain growth was strongly inhibited. Furthermore, the growth mechanisms of ZrB2 and SiC were studied.  相似文献   

18.
《Ceramics International》2017,43(11):8475-8481
ZrC-based composites were consolidated from ZrC and TiB2 powders by the Spark Plasma Sintering (SPS) technique at 1685 °C and 1700 °C for 300 s under 40-50-60 MPa. Densification, crystalline phases, microstructure, mechanical properties and oxidation behavior of the composites were investigated. The sintered bodies were composed of a (Zr,Ti)C solid solution and a ZrB phase. The densification behaviors of the composites were improved by increasing the TiB2 content and applied pressure. The highest value of hardness, 21.64 GPa, was attained with the addition of 30 vol% TiB2. Oxidation tests were performed at 900 °C for 2 h and the formation of ZrO2, TiO2 and B2O3 phases were identified by using XRD.  相似文献   

19.
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800?°C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000?°C–1600?°C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.  相似文献   

20.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号