首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

2.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

3.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

4.
《Ceramics International》2017,43(13):9973-9978
This paper examined experimentally and theoretically the thermal diffusibility (α), heat capacity (CP1) at a constant pressure (1 atm, 101.33 kPa) and thermal conductivity (κ=CP1α) for the porous mullite ceramics with 0–55% porosity in a wide temperature range from 298 to 1073 K. The change in the κ values with temperature or porosity for the porous mullite was similar to the temperature dependence or porosity dependence of the α values, which were greatly reduced by the air included in the pores. The κ values for the porous mullite were theoretically analyzed with two model structures of pore–dispersed mullite continuous phase system (A model) and mullite–dispersed pore continuous phase system (B model). The measured κ values at 0–23% porosity agreed well with the κ values calculated for model A structure. In the high porosity range from 33% to 55%, the measured κ values deviated from the κ curve calculated for model A structure and approached the κ value curve for model B structure with increasing porosity. The real microstructure of 30–60% porosity is equivalent to the mixed microstructure of model A and model B for the thermal conductivity measurement.  相似文献   

5.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

6.
A novel approach to fabricate porous mullite ceramics with homogeneous pore size and high-strength using green non-toxic and cost-effective poly-γ-glutamic acid (γ-PGA) gelling system was reported for the first time. Effect of γ-PGA addition, additive amount and solid loading on rheological behavior of the slurries, and microstructure and properties of samples were investigated systematically. By optimizing the solid loading of mullite samples, we are able to get the sample with small pores (< 200 µm) dominating (93.3% of the total pores), and compressive strength of the sample reaches up to 26.62 MPa. In addition, the mullite ceramics exhibited high porosity of 75.7% with low thermal conductivity of 0.279 W/(m·K) at room temperature. This study not only provides a green and non-toxic gelling system but also offers porous mullite ceramics with low thermal conductivity and excellent mechanical strength as an energy-saving thermal insulation material.  相似文献   

7.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

8.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

9.
Self-reinforced porous mullite ceramics were fabricated by a starch consolidation method with flyash, different aluminium sources (Al(OH)3 and Al2O3) and the additive AlF3 as raw materials. The reinforcement mechanism of needle-like mullite whiskers through in situ synthesis in ceramic body was investigated. The bulk density, apparent porosity and bending strength of the samples were tested. Phase compositions and microstructures of the sintered samples were measured by XRD and SEM, respectively. It showed that AlF3 as additive was helpful to the formation of mullite whiskers at a low temperature. As the aluminium sources, Al(OH)3 was more suitable for the preparation of mullite whiskers than Al2O3. The in situ synthesized mullite whiskers formed an interlocking structure, which enhanced the mechanical strength of the porous mullite ceramics. Porous mullite ceramics with bending strength of about 100 MPa and apparent porosity of about 55% were made at 1550 °C.  相似文献   

10.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

11.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

12.
采用发泡法与添加造孔剂相结合,以高铝矾土和高岭土为骨料,长石作熔剂,并添加适量的煤、MgSO4和CaSO4作发泡剂,煤为造孔剂,PVA为粘结剂,干压成型后于1500℃左右烧成制备了莫来石质多孔陶瓷。制得的多孔陶瓷莫来石生成量高达90%以上,其气孔分布均匀,孔径分布范围为100~300μm;气孔率高达52.3%(闭孔气孔率为38.7%,开孔气孔率为13.6%);体积密度为0.9731g/cm3;抗压强度为25.1317MPa;导热系数为0.143W/(m.K)的多孔陶瓷。  相似文献   

13.
《Ceramics International》2023,49(1):847-854
Mullite fiber-based porous ceramics have been widely used in the field of heat insulation. To further broaden their applications in other fields, such as filtration and sound absorption, mullite whiskers and alumina platelets were introduced as the secondary structural materials in mullite fiber-based porous ceramics by a sol-gel combining heat-treating method, and new fiber-based porous ceramics with a unique multilevel pore structure were developed. By adjusting the molar ratios of aluminium tri-sec-butoxide to aluminium fluoride and calcination temperature, these fiber-based porous ceramics not only presented the characteristics of lightweight (maximum density of 0.38 g/cm3) and good heat insulation (minimum thermal conductivity of 0.11 W/mK) comparable to traditional fiber-based porous ceramics, but also showed a superior specific surface area (up to 11.5 g/m2) and excellent sound absorption performance (average sound absorption coefficient as high as 0.728). Owing to these outstanding characteristics, the corresponding porous ceramics are expected to be promising multifunctional materials in diverse fields, especially thermal insulation and sound absorption.  相似文献   

14.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1).  相似文献   

15.
《Ceramics International》2017,43(12):8809-8812
Porous mullite microspheres with a highly open porosity and average diameter of more than 800 µm were fabricated via an oil-drop molding method accompanied by a freeze casting process. After sintering, a highly porous structure was formed due to interlocking whisker-shaped mullite grains and formation of interconnected skeletons during the freeze-casting process. Additionally, it was found that a high porosity and large pore size in the microspheres green bodies are favorable for the synthesis of mullite whiskers with high aspect ratio.  相似文献   

16.
《Ceramics International》2019,45(12):14517-14523
High-strength insulating ceramic materials were prepared using lightweight mullite microspheres with dense surfaces and high internal porosity as the main raw material and silica sol as a binder. The effects of AlF3·3H2O content on the in situ formation and growth of mullite whiskers were analyzed by X-ray diffraction and scanning electron microscopy. The obtained results showed that mullite whiskers were formed in large quantities at 1200 °C using AlF3·3H2O and V2O5 as additives; their optimal growth was observed at 4 wt% AlF3·3H2O and 1 wt% V2O5. The apparent porosity of the produced specimens was 39%; the MOR and CCS of the specimens were 31 and 152 MPa, respectively; the HMOR at 1300 °C was 11.32 MPa; and the thermal conductivity at 900 °C was 0.783 W m−1 K−1. The staggered whisker network structure formed between mullite microspheres not only improved the mechanical properties of the material, but also refined its pore size, reduced the thermal conductivity, and enhanced the thermal insulation properties.  相似文献   

17.
Porous anorthite/mullite ceramics with both high porosity and high strength have been successfully fabricated by foam-gelcasting and pressureless sintering technology, using α-Al2O3, SiO2, and CaCO3 as starting materials and MnO2 as sintering aids. The porous mullite ceramics prepared in this study had 83.3% porosity and 0.3 W/m·K thermal conductivity, exhibited compressive strength value as high as 6.1 MPa. The samples fabricated with mullite content of 30 mol% possessed 79.4% porosity and 5.9 MPa compressive strength showed thermal conductivity as low as 0.19 W/m·K. With the addition of MnO2, the properties of the prepared materials varied slightly when mullite content changed in a large scale. The results showed that the addition of MnO2 promoted the reaction, affected sintering and grain growth, and contributed to high strength and low-thermal conductivity.  相似文献   

18.
Porous anorthite/mullite whiskers ceramics with high porosity (>91%) and high strength (>0.45 MPa) have been successfully prepared by foam gel-casting method. Effects of extra mullite whiskers on properties including thermal conductivity and compressive strength at different temperatures were investigated and discussed in terms of microstructure observed through SEM and TEM. The results showed that the addition of extra mullite whiskers in certain content could effectively reduce thermal conductivity, improve the compressive strength both at room and high temperature at same time. When the mullite whiskers content was 20 mol%, the porosity was as high as 91.6 ± 0.19%, the thermal conductivity was low to 0.034 ± 0.003 W/(m·K), and the compressive strength at 1000°C was high to 0.64 ± 0.11 MPa three times to the pure one. Small pores, small grains, and more phase interface or grain boundary caused by the addition of extra mullite whiskers were the main factors for low thermal conductivity. Meanwhile, small pores, closely bonded small grains, and the stable three-dimension network formed by mullite whiskers helped to improve strength.  相似文献   

19.
《Ceramics International》2015,41(7):9009-9017
Porous mullite ceramics were prepared via foam-gelcasting using industrial grade mullite powder as the main raw materials, Isobam-104 as the dispersing and gelling agent, sodium carboxymethyl cellulose as the foam stabilizing agent, and triethanolamine lauryl sulfate as the foaming agent. The effects of processing parameters such as type and amount of additive, solid loading level and gelling temperature on rheological properties and gelling behaviors of the slurries were investigated. The green samples after drying at 100 °C for 24 h were fired at 1600 °C for 2 h, and the microstructures and properties of the resultant porous ceramic samples were characterized. Based on the results, the effects of foaming agent on the porosity level, pore structure and size and mechanical properties of the as-prepared porous mullite ceramics were examined. Porosity levels and pore sizes of the as-prepared samples increased with increasing the foaming agent content up to 1.0%, above which both porosity levels and pore sizes did not change. The compressive strength and flexural strength of the as-prepared sample with porosity of 76% and average pore size of 313 μm remained as high as 15.3±0.3 MPa and 3.7±0.2 MPa, respectively, and permeability increased exponentially with increasing the porosity.  相似文献   

20.
Spearhead columnar mullite was synthesized by in-situ reaction with V2O5 as additive. When the content of V2O5 was 7 wt%, the length of the spearhead columnar mullite was the longest with an aspect ratio of about 3.5. Furthermore, columnar self-reinforced mullite porous ceramics were prepared by a foam-gelcasting method, and the effects of V2O5 content on the rheological and gelling properties of mullite slurries as well as the microstructure, physical property and thermal insulation property of the prepared mullite porous ceramics were studied. The results showed that the flexural strength and compressive strength of the porous ceramics with 63% porosity prepared by using 2 wt% V2O5 additive were respectively as high as 13.9 and 41.3 MPa, and the thermal conductivity was about 1.04 W m?1 K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号