首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

2.
La2Mg1-x/2Zr1-x/2O6:xBi3+(x=0.01-0.035,abbreviated as LMZ:Bi3+) and La2-yMg0.99Zr0.99O6:0.02Bi3+,yEu3+(y=0.1-0.11,abbreviated as LMZ:Bi3+,Eu3+) double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi3+(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range be...  相似文献   

3.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

4.
A series of single-phase and color-tunable phosphors Sr2La3(SiO4)3F:0.15Tb3+,xSm3+(SLSOF:0.15Tb3+,xSm3+) was prepared using solid-state route.The X-ray diffraction(XRD) was used to characterize the phase of the as-prepared samples.The synthesized phosphors have apatite-type structure without other impurities.Sm3+ and Tb3+ ions substitute La3+ into the lattice and form a single...  相似文献   

5.
In the present study, Sm3+ activated inorganic orthophosphate CsMgPO4 (CSMP) phosphors were prepared by adopting a solid-state reaction method. The structural phase purity and morphological features were studied by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The molecular structure and vibrational modes were substantiated with the Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy characterization. The optical bandgap of the host and Sm3+ doped phosphors was deduced from the diffused reflectance (DR) spectra with a typical value of 5.72 eV and a small variation is observed with increasing concentrations. A systematic study of photoluminescence (PL) properties of Sm3+ doped CSMP phosphors was carried out. From the room temperature excitation and emission spectra, it is found that the phosphor emits in the orange rich red light under the suitable excitation of 402 nm in the UV region and concentration quenching occurs at x = 0.02 doping level. The emission peaks observed at around 562, 598 and 644 nm confirm the characteristic Sm3+ 4f-4f transitions. The temperature-dependent photoluminescence (TD-PL) of the x = 0.02 (optimum doping) is recorded from 30 to 210 °C, showing good thermal stability even at 150 °C. The thermal quenching mechanisms are discussed based on the configuration coordinate model of excitation and emission. The prepared phosphors are found to exhibit near thermal stability compared to the commercially available red phosphors. PL decay time and quantum efficiency were measured. The colour coordinates are found to lie in the orangish-red region of the colour space. Thus the prepared phosphors CSMP:x Sm3+ can be useful as a red component in designing UV excitable chip-based phosphor-converted white LED applications.  相似文献   

6.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

7.
BiOCl crystal shows potential as efficient optical host due to its special layered structure. Here,the luminescence properties of the Er~(3+)/Sm~(3+) co-doped BiOCl phosphors as single-phase phosphors were reported. Upon near ultraviolet excitation(NUV, 380 nm corresponding the ~4 I_(15/2)→ ~4 G_(11/2) transition of Er~(3+) ions), the phosphors exhibit the efficient characteristic emissions of Er~(3+) and Sm~(3+) ions simultaneously. The energy transfer(ET) from Er~(3+) to Sm~(3+) ions in the layered crystals has been validated by the variation of emission intensities and decay lifetimes respectively, which is ascribed to be a dipoledipole interaction. By virtue of the ET behavior and increasing Sm~(3+) ion concentration, the enhancing emission intensity of Sm~(3+) and the tunability of emission color from yellowish-green(0.318, 0.420) to white(0.343, 0.347) are realized. The results of our work indicate that the Er~(3+)/Sm~(3+) co-doped BiOCI phosphor has a promising application serving as single component white emitting phosphors for NUV excited WLEDs.  相似文献   

8.
A yellow emitting long afterglow luminescence material SrSc2O4:Pr3+ was successfully prepared by solid state reaction method. SrSc2O4:Pr3+ phosphor shows a long afterglow luminescence peak at about 495, 545, 621, 630 and 657 nm, respectively, corresponding to the f–f transitions of Pr3+. The afterglow chromaticity coordinates of SrSc2O4:1 at%Pr3+ were calculated to be (0.35, 0.41), indicating that the afterglow emission is close to the light of yellow region. And, the afterglow luminescence of the optimal sample doped by 1 at%Pr3+ can persist for over 3 h. The thermoluminescence results suggest that there are three types of traps with depth of 0.61, 0.69 and 0.78 eV exiting for all the samples, which are produced by the addition of Pr3+ ions. The trap density of SrSc2O4:1 at%Pr3+ is the maximum when the incorporation of Pr3+ ions reaches 1 at%, which thus results in the longest afterglow luminescence. All the results indicate that SrSc2O4:Pr3+ can be a potential candidate of novel long afterglow phosphors.  相似文献   

9.
In this study, novel yellow-emitting fluorophosphate NaCa3Bi(PO4)3F phosphors doped with different concentrations of Dy3+ ions were first obtained via high-temperature solid-state reaction. The crystal structure, phase purity, particle morphology, photoluminescence (PL) properties, thermal stability, and luminescence decay curves of the resulting phosphors were then characterized in detail. Under the excitation of 349 nm, the three dominant peaks of the NaCa3Bi(PO4)3F:Dy3+ are centered at 480 nm (4F9/2-6H15/2), 577 nm (4F9/2-6H13/2), and 662 nm (4F9/2-6H11/2). The optimal doping concentration of Dy3+ ions in the NaCa3Bi(PO4)3F:xDy3+ phosphors is x = 5 mol%. The phosphors show excellent thermal stability with high activation energy (Ea = 0.32 eV). Eventually, the synthesized white light-emitting diode (w-LED) demonstrates the Commission International de L'Eclairage (CIE) chromaticity coordinates of (0.341, 0.334), a good correlated color temperature (CCT) of 5083 K, and a high color rendering index (Ra) of 92. Revealing its potential as yellow-emitting phosphors, the feasibility of the fabricated apatite-type NaCa3Bi(PO4)3F:Dy3+ fluorophosphate phosphors was confirmed for w-LEDs.  相似文献   

10.
A novel orange-red emitting Ba3Y4O9:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra, fluorescence decay and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties. The results show that the excitation spectrum includes a series of linear peaks at 350, 367, 382, 410, 424, 445, 470 and 495 nm, respectively. Under 410 nm excitation, the emission peaks were located at 574 nm (4G5/26H5/2), 608 nm (4G5/26H7/2), 659 nm (4G5/26H9/2) and 722 nm (4G5/26H11/2), respectively. The concentration quenching occurs when x equals 0.08 for Ba3Y4–xO9:xSm3+ phosphor and its mechanism is ascribed to the dipole–dipole interaction. The chromaticity coordinates of Ba3Y3.92O9:0.08Sm3+ phosphor are in the orange-red region. The temperature-dependent study shows that this phosphor has excellent luminescence thermal-stability. And the luminescence intensity of Ba3Y3.92O9:0.08Sm3+ phosphor at 473 K only declines by about 25.75% of its initial intensity. The experimental data indicate that Ba3Y4O9:Sm3+ phosphor may be promising as an orange-red emitting phosphor for white light emitting diodes.  相似文献   

11.
In this paper,effect of two strategies on afterglow behavior of Lu2O3:Eu single crystal scintillato r,Pr3+ codoping and solid solution with Sc2O3,were studied systematically.Two groups of Lu2O3:5 at%Eu,x at%Pr(x=0,0.2,0.5,1,2 and 5) and(Lu1-yScy)2O3:5 at%Eu(y=0,20 at%,50 at% and 70 at%) single crystals were grown by floating zone(FZ) method in air atmosphere.The structures of ...  相似文献   

12.
A series of reddish orange phosphors Ba_3Gd_(1-x)(PO_4)_3:xSm~(3+)(x = 0.02.0.04,...,0.12) were prepared by the high-temperature solid-state reaction. X-ray powder diffraction(XRD) and diffuse reflectance and photoluminescence spectra were utilized to characterize the structure and spectral properties of the phosphors. The phosphors have strong absorption in the near-UV region. CIE chromaticity coordinates of the phosphors are located in the reddish orange region since the strongest emission band is around 598 nm and related to the ~4 G_(5/2)→~6 H_(7/2) transition of Sm~(3+). Optimal concentration of Sm~(3+) in the phosphors is about 6.0 at%. The quantum yield of the Ba_3Gd_(0.94)(PO_4)_3:0,06 Sm~(3+) under excitation at 403 nm is about 52.07%. Temperature dependent photoluminescence spectra of the Ba_3Gd_(0.94)(PO_4)_3:0.06 Sm~(3+) were measured and the phosphor exhibits high thermal stability of emission. All the results show that the Ba_3Gd(PO_4)_3:Sm~(3+) phosphor may be a potential red phosphor for near-UV based white LEDs.  相似文献   

13.
YAG:Ce,Sm spherical phosphors were synthesized by malic acid sol-gel method.The formation process of crystalline was characterized by X-ray diffraction(XRD)technique.The influence of Sm3+ doping on the luminescent intensity and the morphology of phosphors were studied by fluorescence spectrum and scanning electron microscopy(SEM)techniques,respectively.The results indicated that the size of spherical powders was about 100 nm calcined at 1200 ℃ for 3 h.The emission spectra of phosphors showed gradual red-shift from 525 to 540 nm with the increase of doping concentration of Sm3+ ion.A broadband emission spectrum of Ce3+ ion appeared at 540 nm,and a series of emission peaks corresponding to the 4G5/2→6HJ transition of Sm3+ ion also appeared at 617 nm with the doping of Sm3+.The red component of YAG:Ce phosphors increased with the doping of Sm3+.  相似文献   

14.
The effects of Li~+ co-doping concentration on the structure, upconversion luminescence and temperature sensing behavior of Er~(3+):La_2O_3 phosphors were investigated. X-ray diffraction and scanning electron microscopy observations reveal that Li~+ ion co-doping can change the lattice parameter of La_2O_3 host and increase the particle size of the samples. The optical investigation shows that co-doping of Li~+ ions can enhance the upconversion emission of Er~(3+) ions in La_2O_3 matrix effectively. Most importantly, the temperature sensing sensitivity of the samples is found to be dependent on Li~+ co-doping concentration,when the emission intensity ratio of the(~2H_(11/2)→~4 I_(15/2)) and(~4 S_(3/2)→~4 I_(15/2)) transitions of Er~(3+) is chosen as the thermometric index. Both of the optimum upconversion luminescence and temperature sensing sensitivity are obtained for 7 mol% Li~+ co-doped sample. When the Li~+ concentration is beyond 7 mol%,both the quenching in upconversion intensity and the degradation of temperature sensitivity are observed, which may be due to the serious distortion in local crystal field around Er~(3+) ions caused by the excess Li~+ ions.  相似文献   

15.
Sm3+ ions incorporated Sm2Si2O7 crystalline phase formed in the aluminoborosilicate glass matrix synthesized via melting quenching technique followed by heat-treatment process is reported herewith.The preliminary confirmation on the obtained glass ceramics was made through X-ray diffration(XRD) studies.Formation of non-bridging oxygens(NBOs) in the glass network and the modes of vibrations of network units we re analyzed through Fourier transform infra...  相似文献   

16.
In the current study,a modified sol-gel route was used to produce undoped and Sm3+ doped(1 mol%,3 mol% and 5 mol%) ZnO nanoparticles(NPs).The study of opto-structural properties of Sm3+ doped NPs was carried out both experimentally and theoretically.Complete dissolution of Sm3+ ions into the ZnO lattice is obviously seen from X-ray diffraction(XRD) analysis.Morphological evolution with doping was studied using field emission scanning electron microscopy(FESEM) an...  相似文献   

17.
This study presents the photoluminescence characteristic analysis of a series of red phosphors of KAlSiO4:1.5 mol%Sm3+,x mol%Eu3+ (x = 2, 3, 4, 5, 6, 7) prepared via high-temperature solid-phase reaction. The results show that the X-ray diffraction (XRD) refinement results are reliable. The unit cell parameters and volume gradually decrease as the Eu3+ concentration increases, resulting in a grain size reduction of 10.22%. When x = 6, the emission peaks of Sm3+ at 564, 601, and 651 nm disappear completely, and the corresponding full width at half maximum becomes 0. At 610 nm, the emission peak intensity of Eu3+ is increased by a factor of 4.8. The resonant non-radiative energy transfer effect is greater than the co-excitation effect. A maximum energy transfer efficiency of 97.8% is achieved. The integral area at 610 nm is as high as 85%. The color purity of the phosphor is as high as 92.97%, and the internal quantum yield gradually changes from 32% to 51%. Ultimately, these results confirm that the silicate phosphor is suitable for the red component in the three primary color phosphors of white light-emitting diodes.  相似文献   

18.
In very recent years,ultraviolet(UV) persistent luminescent materials(PLMs) have attracted widespread attention due to their potential biological applications.However,owing to the lack of suitable emitters and hosts,the design and development of excellent UV PLMs remain challenging.Here,we report a new Gd-based PLM NaGdGeO4:Bi3+ with super-long UVA persistent luminescence(PersL).By further codoping Li+ ions to increase the concentration of traps,the UVA PersL int...  相似文献   

19.
A series of Ln3+ (Ln3+ = Er3+/Dy3+) ions doped Na2NbAlO5 (NNAO) phosphors were synthesized by solid-state method. The Er3+ and Dy3+ ions doped phosphors were characterized by XRD, photoluminescence (PL) and decay profiles. The Ln3+-doped samples are consistent with the pure NNAO phase which is analyzed by the X-ray diffraction result. The PL graphs show that the intensity of luminescence increases with the increasing doping concentrations up to their critical certain values and then decreases at higher concentrations due to the concentration quenching effect of Er3+/Dy3+ ions. The energy level diagrams containing the positions of 4f and 5d energy levels of Er3+ and Dy3+ ions have been established and studied. In addition, under the ultraviolet light, the prepared NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors show the characteristic green (Er3+), cyan (Dy3+) emission, respectively. Under the excitation of 365 nm, the quantum efficiencies of NNAO:0.01Er3+ and NNAO:0.03Dy3+ phosphors are measured to be 61.7% and 72.2%, respectively. The obtained results indicate that the new NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors are promising applications in white-light emitting diodes field.  相似文献   

20.
Single-phase CaSrAl_2 SiO_7:Sm~(3+) phosphors were synthesized by traditional high temperature solid state reaction method. Formation of samples and phase analysis were confirmed by X-ray diffraction technique. Morphology was done by field emission scanning electron microscopy and elemental compositions were confirmed by energy dispersive X-ray analysis. Present phosphors have tetragonal crystallography with space group P42_1 m. Average crystallite size was calculated by using Scherrer and Williamson-Hall method. Photoluminescence study of CaSrAl_2 SiO_7:Sm~(3+) phosphor was investigated.Under different excitation wavelengths, PL spectra consist of four emission bands at 564, 570, 601 and650 nm. The emission bands located at 564 and 570 nm are associated with the transition ~4 G_(5/2)→~6 H_(5/2)while emission bands at 601 and 650 nm are due to ~4 G_(5/2)→~6 H_(7/2) and ~4 G_(5/2)→~6 H_(9/2),respectively.Intense emission was obtained when phosphor was excited under 404 nm wavelength. Non-radiative energy transfer process involved in concentration quenching, was also discussed. CIE coordinate is found in yellow-orange region, hence CaSrAl_2SiO_7:Sm~(3+) phosphors emit yellow-orange light when efficiently excited by near UV(~400 nm) LED chip. Color purity and CCT of the phosphor were determined; CCT suggests that present phosphor is a good candidate as a warm yellow-orange color emitting phosphor. Effect of different heating rates and different UV exposure time on the TL glow curve of the phosphor was investigated. Activation energies and kinetic parameters for different traps were calculated by using peak shape method. TL emission spectrum was also recorded. Present article explains all the possible mechanisms associated with luminescence process in CaSrAl_2 SiO_7:Sm~(3+) phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号