首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Er3+-Tm3+-Yb3+ tri-doped BaMoO4 phosphors were synthesized by co-precipitation technique and characterized by X-ray diffraction analysis, absorption study and field emission scanning electron microscopy analysis. Upconversion as well as downconversion luminescence studies were performed by using near infrared (980 nm) and ultraviolet (380 nm) excitations. Energy level diagram, pump power dependence and colour coordinate study were utilized to describe the multicolor upconversion emission properties. Under single 980 nm diode laser excitation the dual mode sensing behaviour is realized via Stark sublevels and thermally coupled energy levels of the Tm3+ and Er3+ ions in the prepared tri-doped phosphors. A comparative fluorescence intensity ratio analysis for integrated emission intensities arising from the Stark sublevels {1G4(a) and 1G4(b)} and thermally coupled energy levels {2H11/2 and 4S3/2} of the Tm3+ and Er3+ ions, respectively was carried out in the prepared tri-doped BaMoO4 phosphors. The maximum sensitivity for thermally coupled energy levels of the Er3+ and Stark sublevels of the Tm3+ ion was reported. The developed phosphors could be useful in the display devices and optical thermometric applications.  相似文献   

2.
Gd2O3:Eu3+@CsPbBr3 quantum dots (QDs) mesoporous hollow nanocomposites with good luminescent properties and high stability were built. Among which, the hollow Gd2O3:Eu3+ spheres and CsPbBr3 QDs were prepared by urea homogeneous precipitation and hot-injection method, respectively. Finally, the Gd2O3:Eu3+@CsPbBr3 QDs shell–core compounds were constructed through mechanical stirring. The structure, morphology, stability and luminescent properties were studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry/thermogravity (DSC/TG), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence excitation/photoluminescence (PLE/PL) and life decay tools. Compared to the original CsPbBr3 QDs, Gd2O3:Eu3+@CsPbBr3 QDs display better photostability, thermal stability and current stability. The resulting Gd2O3:Eu3+@CsPbBr3 QDs composite exhibits good yellow emission. The Gd2O3:Eu3+@CsPbBr3 QDs mixed silicone resin was directly coated on the blue LED chip, then the w-LED device with the color coordinate of (0.31, 0.32) was successfully assembled. The Gd2O3:Eu3+@CsPbBr3 QDs compounds with excellent luminescent properties and stability are expected to be widely used in lighting and display areas.  相似文献   

3.
Eu2+-doped bromophosphateapatite Sr5(PO4)3Br phosphors were synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal stability and CIE chromaticity coordinates were systematically investigated. Photoluminescence spectra of Sr5(PO4)3Br:Eu2+ exhibit a single blue emission at 450 nm under the excitation of 345 nm, which is ascribed to the 4f–5d transition of Eu2+. The phosphor shows very good thermal stability. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicate that the blue-emitting Sr5(PO4)3Br:Eu2+ phosphor has potential application in white LEDs.  相似文献   

4.
Herein, we reported novel Y4GeO8:Er3+,Yb3+ phosphors elaborated via conventional solid-state reaction, and we further explored their properties as optical thermometer by using fluorescence intensity ratio (FIR) method complemented by detailed analysis on crystal structure, up-conversion luminescence and energy transfer from Yb3+ to Er3+. Upon 980 nm laser excitation, Y4GeO8:Er3+,Yb3+ phosphors present 525, 547 and 659 nm emission bands assigned to the characteristic transitions of Er3+. Furthermore, Y4GeO8:Er3+,Yb3+ samples show outstanding temperature sensing performances. To be specific, the minimal temperature resolution is 0.03 K (303 K), and the relative sensitivity of FIR can be up to 1.152%/K (303 K). Hence, Y4GeO8:Er3+,Yb3+ phosphors can be possible candidates for thermometry devices.  相似文献   

5.
Tm~(3+)-doped transparent oxyfluoride glass ceramics containing BaYb_xY((1-x))F_5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb~(3+)-mediated energy transfer process.The required photon number of Tm~(3+)ions emissions in BaYb_xY_((1-x))F_5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb~(3+)ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm~(3+):~1G_4(a),~1G_4(b).The obtained sensitivity decreases with the increase of Yb~(3+)ions content,which is mainly attributed to the changes in photon absorption process of Tm~(3+):~1G_4(b).  相似文献   

6.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

7.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

8.
Photon upconversion of lanthanides has been a powerful means to convert low-energy photons into high-energy ones. However, in contrast to the mostly investigated lanthanide ions, it has remained a challenge for the efficient upconversion of Nd3+ due to the deleterious concentration quenching effect. Here we report an efficient strategy to enhance the upconversion of Nd3+ through the Yb3+-mediated energy cycling in a core-shell-shell nanostructure. Both Nd3+ and Yb3+ are confined in the interlayer, and the presence of Yb3+ in the Nd-sublattice provides a more matched energy for the upconversion transitions occurring at the intermediate state of Nd3+ towards much better population at its emissive levels. Moreover, this design also minimizes the possible cross-relaxation processes at both intermediate level and the emissive levels of Nd3+ which are the primary factors limiting the upconversion performance for the Nd3+-doped materials. Such energy cycling-enhanced upconversion shows promise in temperature sensing.  相似文献   

9.
Europium(Eu~(3+)) doped glasses of chemical compositions(55-x)B_2O_3:10 SiO_2:25 Y_2O_3:10CaO:xEu_2O_3,where x denotes mol% and ranges 0≤ x ≤ 2.5, were synthesized by adopting conventional melt quenching technique, Physical properties like density, molar volume, polaron radius, inter-ionic distance and field strength of the glass samples were investigated to assess the impact of Eu_2O_3. Optical and luminescence properties of the glasses were characterized with optical absorption, photoluminescence,X-ray induced emission spectra, temperature dependence emission spectra and decay times. Judd-Ofelt(JO) intensity parameters(Ω_λ) of the glasses were evaluated based on the absorption spectrum of 0.5 mol%. JO parameters, calculated from absorption spectra with thermal corrections on oscillator strength, were used to evaluate radiative properties such as radiative transition probability(A_R),branching ratio(β_R), stimulated cross section emission(σ) and radiative lifetime(τ_R) for ~5D_0→~7 F_J(J = 0,1,2,3 and 4) transitions. The decay rate of ~5D_0 fluorescent level for all the glass samples was single exponential. Lifetimes of the ~5D_0 level were decreased with increasing concentrations of Eu~(3+)ions from 0.05 mol% to 2.5 mol% which might be due to energy transfer through cross-relaxation in the glasses. The chromaticity coordinates(x, y) were similar for all BSYCaEu glasses and were located at the red region of CIE 1931 color chromaticity diagram. Hence, these results confirm that the Eu~(3+) doped BSYCaEu glasses could be useful for visible red lasers and glass scintillation applications.  相似文献   

10.
A novel non-contact optical thermometer, qualified with high sensitivity and temperature resolution, is urgently needed for temperature measuring of micro devices, moving objects and specific severe environments. Hence, a series of dual-emitting La5Si2BO13:Ce3+,Eu2+ phosphors were synthesized. The two ions show diverse responses with the changing in temperature. The variational emissions of Ce3+ and Eu2+ can be converted to FIR (fluorescence intensity ratio) signals. The maximal absolute sensitivity Sa and relative sensitivity Sr reach up to 0.07526%/K and 3.2241%/K, respectively. It is worthy noting that the Sa and Sr possess the same variation tendency and both have high values in the low temperature region (293–373 K), showing the great temperature measuring property especially in low temperature region. The temperature sensing characteristics are superior to the results of most previous reports. The energy transfer (ET) process is certified to occur from Ce3+ to Eu2+ ions. These studies indicate that La5Si2BO13: Ce3+,Eu2+ phosphor could have a good prospect for optical thermometry.  相似文献   

11.
The optical and thermal properties of a new class of fluoroindate glass with different erbium contents were investigated via Raman, transmission, and fluorescence spectroscopies, fluorescence decay curve analysis, and differential scanning calorimetry. The strength parameters of the samples were calculated using the Judd–Ofelt theory. The mid-infrared luminescence properties of erbium-doped fluoroindate glasses were studied, and a strong emission at 2.7 μm was obtained. Compared with the traditional ZBLAN glass, this glass has excellent emission properties, especially a longer fluorescence lifetime (7.09 ms) and larger emission cross-section (6.95 × 10?21 cm2) at 2.7 μm. The results indicate that fluoroindate glass is an attractive host for mid-infrared lasers and as a gain medium for optical amplifier applications.  相似文献   

12.
Eu~(3+)-doped hydrocalumites (Eu~(3+)-doped CaAl-LDH) were prepared in an ethanol/water media. Various techniques, including inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), and fluorescent spetctra (FL), etc., were employed to study the structure, composition,and fluorescence of samples. Compositional analyses reveal that the contents of all the elements calculated from the chemical formula are close to that of the actual found from measurement. XRD results suggest that the samples with different molar ratios of Ca~(2+)/(Al~(3+)+Eu~(3+)) present typical layered structure. Moreover, all the samples exhibit monoclinic structure. Fluorescent spectra show strong red emissions ascribed to~5D_0→~7F_J(J=1, 2) transitions of Eu3+ions for all the Eu~(3+)-doped hydrocalumites,revealing that the hydrocalumite is favorable for the emission of Eu~(3+). The Eu~(3+)-doped hydrocalumite may be a latent fluorescent material applied in biological or medical fields in consideration of the biocompatibility of Ca~(2+) ions and fluorescent property of Eu~(3+) ions.  相似文献   

13.
An optical heater based on hexagonal NaGdF_4:Yb~(3+)/Er~(3+) is reported. XRD, SEM and EDS characterization results show that F~-/Ln~(3+) can not only control the phase composition, particle size and morphology, but also affect the effective doping concentration of Yb~(3+) and Er~(3+).When F~-/Ln~(3+) is 12/1, the strongest upconversion luminescence is obtained. Based on the luminescent temperature sensing behavior of Er~(3+),the photo-thermal conversion performance was investigated. The results indicate that the temperature of irradiation spot is linearly dependent on the power density, and the photo-thermal responsivity is determined to be 3.3K·cm~2/W. Also, it is found that the photo-thermal conversion efficiency can be regulated by changing the Yb~(3+) doping concentration. Compared with the nano-gold, copper sulfide and carbon nanotubes, the NaGdF_4:Yb~(3+)/Er~(3+) has the triple functions of upconversion luminescence, temperature sensing, and photo-thermal conversion, and may therefore be a promising optical heater for photo-thermal therapy of tumors.  相似文献   

14.
Phosphor-in-glass(PiG) is a potential color convertor for high power WLEDs.A novel glass matrix with advanced performance is still a challenge.Recently,Eu3+ doped glass matrix has attracted much consideration mainly due to its red compensation.A new borophosphate matrix to realize Eu3+ red light was designed in the Na2O-ZnO-P2O5-B2O3-Eu2O3 system.Meanwhile,a series of PiGs composed of different con...  相似文献   

15.
The crystal structure and surface morphology of the Er3+/Yb3+/Na+:ZnWO4 phosphors synthesized by solid state reaction method were analyzed by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) analysis.The frequency upconversion(UC) emission study in the developed phosphors was investigated by using 980 nm laser diode excitation.The effect of codoping in the Er3+:ZnWO4 phosphors on the UC emission intensity was studied.The UC emission bands that are exhibited in the blue(490 nm),green(530,552 nm),red(668 nm) and NIR(800 nm) region correspond to the 4F7/24I15/2.2H11/2,4S3/24I15/2,4F9/24I15/2 and 4I9/2→4I15/2 transitions,respectively.The temperature sensing performance of the Er3+-Yb3+-Na+:ZnWO4 phosphors was investigated based on the 2 H11/24I15/2 and 4S3/24I15/2 thermally coupled transitions of the Er3+ions.The photometric study was also carried out for the developed phosphors.  相似文献   

16.
A series of new double perovskite La2–xEuxCaSnO6 (0 ≤ x ≤ 0.8) red phosphors were synthesized by traditional solid-state reaction. The phase, microstructure, photoluminescence (PL) properties, quantum efficiency, and thermal stability of the phosphors were investigated. La2CaSnO6 matrix has a monoclinic double perovskite structure with space group P21/n. Under near-ultraviolet (UV) light at 395 nm, La2–xEuxCaSnO6 phosphors exhibit the most typical red emission peak at 614 nm, which corresponds to 5D07F2 electric dipole transition of Eu3+. The optimum Eu3+ doping content is attained at x = 0.5, and the La1.5Eu0.5CaSnO6 phosphor shows a moderate quantum efficiency (32.3%) and high color purity (92.2%). Besides, the temperature-dependent spectrum of the phosphor was studied. The emission intensity of Eu3+ at 423 K decreases to 70.94% of the initial intensity at 303 K, and the activation energy ΔE is estimated to be 0.232 eV, suggesting that the phosphors possess good thermal stability. The fabricated w-LED based on the phosphors has higher Ra (89), lower CCT (4539K), and better chromaticity coordinates (0.371, 0.428). These results prove that the Eu3+-doped La2CaSnO6 red phosphor has great potential applications in w-LEDs.  相似文献   

17.
A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors were synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+ samples were systematically investigated. The phosphor can be efficiently excited by the near ultraviolet light (NUV) of 396 nm and blue light of 466 nm, and give out red light emission at 618 nm corresponding to the electric dipole transition (5D07F2). The optimal doping concentration of Eu3+ ions in BaLiZn3(BO3)3 is determined to be about 3 mol%, and the concentration-quenching phenomenon arise from the electric dipole–dipole interaction. The temperature dependent luminescence behavior of BaLiZn3(BO3)3:0.03Eu3+ phosphor exhibits its good thermal stability, and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV. The decay lifetime of the BaLiZn3(BO3)3:0.03Eu3+ is measured to be 1.88 ms. These results suggest that the BaLiZn3(BO3)3:Eu3+ phosphors have the potential application as a red component in white light emitting diodes (WLEDs) with NUV or blue chips.  相似文献   

18.
In this work,tunable white up-conversion luminescence was achieved in the Yb3+,Er3+,Tm3+,Ho3+ codoped Na3La(VO4)2 phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the 2H11/2/4S3/24I15/2 transitions of Er3+,1G43H6 transition of Tm3+,and5...  相似文献   

19.
First-principles calculations based on density functional theory were performed to investigate the cohesive energies, elastic modulus, Debye temperatures, thermal conductivities and density of states of La2−xYbxZr2O7, La2Zr2−xCexO7 and La2−xYbxZr2−xCexO7 (x = 0.00, 0.25, 0.50, 0.75, 1.00) ceramics. The results show that doping Yb3+ or Ce4+ into La2Zr2O7 reduces its elastic modulus, thermal conductivity and Debye temperature. Compared with La2−xYbxZr2O7 (x ≠ 0.00), La2Zr2−xCexO7 compounds have better ductility and lower Debye temperature. The Debye temperature values of La2Zr2−xCexO7 (x ≠ 0.00) compounds are in the range of 485.0–511.5 K. Among all components, the fluorite-type La2−xYbxZr2−xCexO7 (x = 0.75, 1.00) compounds exhibit better mechanical and thermophysical properties, and their thermal conductivity values are only 1.213–1.246 W/(m∙K) (1073 K), which are 14.5%–16.7% lower than that of the pure La2Zr2O7. Thus, our findings open an entirely new avenue for TBCs.  相似文献   

20.
Novel yellow-emitting phosphors of Dy~(3+)-doped double perovskite Ca_2 MgTeO_6 were synthesized by using a conventional high-temperature solid-state reaction.The phase purity,particle morphology,size distribution,elemental composition,luminescence properties,and luminescence decay curves of the resulting products were then analyzed in detail.The Ca2 MgTeO_6:Dy~(3+),Na~+ phosphors show three emission peaks after near-ultraviolet excitation at 350 nm,which correspond to ~4 F_(9/2)→~6 H_(11/2),~4 F_(9/2)→~6 H_(13/2),and ~4 F_(9/2)→~6 H_(13/2) transitions,respectively.Among them,the strongest peak is observed at 573 nm.The best doping content of Dy~(3+)in Ca_2 MgTeO_6:xDy~(3+),xNa~+ phosphors is x=5 mol%.The calculated critical distance of energy transfer between Dy~(3+) ions is 1.6 nm.Luminescence quenching is confirmed to be due to dipole-dipole interactions among Dy~(3+) ions.The phosphors show excellent thermal stability with high activation energy(0.27 eV).The Commission Internationale de l'Eclairage(CIE) chromaticity coordinates of the Ca_2 MgTeO_6 Dy~(3+),Na~+ phosphors are located in the yellow region.White light-emitting diodes(w-LEDs) were fabricated with a high color rendering index(R_a) of 88 and a good correlated color temperature(CCT) of 5440 K.All observed properties indicate that Ca_2 MgTeO_6:Dy~(3+),Na~+ phosphors have potential applications in display and photonic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号