首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BiFeO3 thin films, specifically those fabricated by chemical solution deposition, suffer from severe leakage that hinder the acquirements of their intrinsic high polarizations and are thus normally not considered for use in practical electronics. The controlled fabrication of thin films with reduced leakage is of vital importance. In the present work, BiFeO3 films (with thicknesses below ~300 nm), assisted by an interfacial amorphous layer, were fabricated by chemical solution deposition on Pt/Ti/SiO2/Si substrates. This facile method facilitates the growth of the mentioned amorphous layer, and the ferroelectric properties of the obtained films were greatly enhanced. The conducting mechanisms of both types of thin films were systematically investigated to understand the impact of the designed interface. The results not only advance the potential use of BiFeO3 thin films in electromechanical devices but also promote chemical solution deposition as a promising methodology for the fabrication of high-quality ferroelectric films with compressed leakage.  相似文献   

2.
《Ceramics International》2016,42(12):13432-13441
The current study explored the influence of Mn substitution on the electrical and magnetic properties of BiFeO3 (BFO) thin films synthesized using low cost chemical solution deposition technique. X-ray diffraction analysis revealed that pure rhombohedral phase of BiFeO3 was transformed to the tetragonal structure with P4mm symmetry on Mn substitution. A leakage current density of 5.7×10−4 A/cm2 which is about two orders of magnitude lower than pure BFO was observed in 3% Mn doped BFO thin film at an external electric field >400 kV/cm. A well saturated (p-E) loops with saturation polarization (Psat) and remanent polarization (2Pr) as high as 60.34 µC/cm2 and 25.06 µC/cm2 were observed in 10% Mn substituted BFO thin films. An escalation in dielectric tunability (nr), figure of merit (K) and quality factor (Q) were observed in suitable Mn doped BFO thin films. The magnetic measurement revealed that Mn substituted BFO thin films showed a large saturation magnetization compared to pure BFO thin film. The highest saturation ~31 emu/cc was observed for 3% Mn substituted BFO thin films.  相似文献   

3.
《Ceramics International》2017,43(16):13371-13376
Lead free Bi0.5(Na0.8K0.2)0.5TiO3 thin films doped with BiFeO3 (abbreviated as BNKT-xBFO) (x = 0, 0.02, 0.04, 0.08, 0.10) were deposited on Pt(111)/Ti/SiO2/Si substrates by sol-gel/spin coating technique and the effects of BiFeO3 content on the crystal structure and electrical properties were investigated in detail. The results showed that all the BNKT-xBFO thin films exhibited a single perovskite phase structure and high-dense surface. Reduced leakage current density, enhanced dielectric and ferroelectric properties were achieved at the optimal composition of BNKT-0.10BFO thin films, with a leakage current density, dielectric constant, dielectric loss and maximum polarization of < 2 × 10−4 A/cm3, ~ 978, ~ 0.028 and ~ 74.13 μC/cm2 at room temperature, respectively. Moreover, the BNKT-0.10BFO thin films possessed superior energy storage properties due to their slim P-E loops and large maximum polarization, with an energy storage density of 22.12 J/cm3 and an energy conversion efficiency of 60.85% under a relatively low electric field of 1200 kV/cm. Furthermore, the first half period of the BNKT-0.10BFO thin film capacitor was about 0.15 μs, during which most charges and energy were released. The large recoverable energy density and the fast discharge process indicated the potential application of the BNKT-0.10BFO thin films in electrostatic capacitors and embedded devices.  相似文献   

4.
The electrophoretic deposition (EPD) was applied to BiFeO3 (BFO) powders, one of the most interesting multiferroic compounds characterized by simultaneous magnetic and ferroelectric activity, to form homogeneous films. The preparation and characterization of stable BFO colloidal suspensions in aqueous, organic and mixed solvents were investigated by zeta potential measurements at room temperature in the presence of surfactants. BFO thin films were then deposited on steel substrates from stabilized BFO suspensions, by adjusting the preparative parameters to optimize the film quality. The compositional, morphological and electrical characteristics of the obtained BFO films, together with thickness measurements, were studied using SEM, XRD, AFM, EIS and optical surface profilometer. EPD method applied to BFO stable suspensions produced homogeneous thickness BFO films, free from pinholes and cracks, that were successively sintered and characterized also in terms of photocatalytic response.  相似文献   

5.
The (1 – x)BiFeO3-xPbTiO3 (BFO-PTO) perovskite solid solution has great potential for being used in practical devices, as it exhibits significant ferroelectric response at its morphotropic phase boundary (MPB). However, the significant conduction, particularly high electrical leakage currents that BFO-PTO films show at room temperature, deteriorates their functionality. This is mainly associated with the presence of multivalent iron along with A-site and oxygen vacancies. Here, solution-derived BFO-PTO thin films have been crystallized at low temperature on Pt/TiO2/SiO2/Si substrates, by a rapid thermal annealing process to minimize Bi and Pb volatilization. X-ray analyses have revealed that textured films are obtained with a pseudocubic perovskite structure and without the formation of detectable second phases. Microstructural studies indicated a columnar growth of the films with grain size well above the nanometric range, which, therefore, should not produce an appreciable reduction of the ferroelectric response due to size effects. Because of the relatively low content of charged defects produced in these BFO-PTO films during processing, ferroelectric hysteresis loops can be measured at room temperature. The highest value of remnant polarizations (2P= 58 μC/cm2) was obtained for the 0.65BiFeO3-0.35PbTiO3 (65BFO-35PTO) films, which suggests that this film composition lies in the proximity of the MPB where the coexistence of a highly textured <100> tetragonal phase and a rhombohedral one seems to occur.  相似文献   

6.
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi1.00−xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10−6 down to 10−8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe.  相似文献   

7.
Pure BiFeO3 (BFO) and (Bi0.9RE0.1)(Fe0.975Cu0.025)O3?δ (RE=Ho and Tb, denoted by BHFCu and BTFCu) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. The BHFCu and BTFCu thin films showed improved electrical and ferroelectric properties compared to pure BFO thin film. Among them, the BTFCu thin film exhibited large remnant polarization (2Pr), low coercive field (2Ec) and reduced leakage current density, which are 89.15 C/cm2 and 345 kV/cm at 1000 kV/cm and 5.38×10?5 A/cm2 at 100 kV/cm, respectively.  相似文献   

8.
Single‐BiFeO3 perovskite films onto Pt‐coated silicon substrates have been fabricated by chemical solution deposition using a synthesis strategy based on the use of nonhazardous reagents. Different routes were tested to obtain precursors for the deposition of the films, inferring that bismuth (III) nitrate and iron (III) 2,4‐pentanedionate dissolved in acetic acid and 1,3‐propendiol led to the best solution. Ferroelectric, magnetic, and optical functionalities were demonstrated in these films, obtaining a high ferroelectric polarization at room temperature, ~67 μC × cm?2, a dependence of the magnetization with the film thickness, 0.60 and 2.50 emu × g?1 for the ~215 and ~42‐nm‐thick films, and a direct band gap in the visible range, Eg ~2.82 eV. These results support the interest of solution methods for the fabrication of BiFeO3 thin films onto the silicon substrates required in microelectronic devices.  相似文献   

9.
Multiferroic BiFeO3?BaTiO3 thin films that simultaneously exhibit ferroelectricity and ferromagnetism at room temperature were prepared by chemical solution deposition. Perovskite single-phase 0.7BiFeO3?0.3BaTiO3 thin films were successfully fabricated in the temperature range 600–700 °C on Pt/TiOx/SiO2/Si substrates. As the crystallization temperature was increased, grain growth proceeded, resulting in higher crystallinity at 700 °C. Although the 0.7BiFeO3?0.3BaTiO3 thin films exhibited poor polarization (P)?electric field (E) hysteresis loops owing to their low insulating resistance. The leakage current at high applied fields was effectively reduced by Mn doping at the Fe site of the 0.7BiFeO3?0.3BaTiO3 thin films, leading to improved ferroelectric properties. The 5 mol% Mn-doped 0.7BiFeO3?0.3BaTiO3 thin films simultaneously exhibited ferroelectric polarization and ferromagnetic magnetization hysteresis loops at room temperature.  相似文献   

10.
Structural, microstructural and ferroelectric properties of Pb0.90Ca0.10TiO3 (PCT10) thin films deposited using La0.50Sr0.50CoO3 (LSCO) thin films which serve only as a buffer layer were compared with properties of the thin films grown using a platinum-coated silicon substrate. LSCO and PCT10 thin films were grown using the chemical solution deposition method and heat-treated in an oxygen atmosphere at 700 °C and 650 °C in a tube oven, respectively. X-ray diffraction (XRD) and Raman spectroscopy results showed that PCT10 thin films deposited directly on a platinum-coated silicon substrate exhibit a strong tetragonal character while thin films with the LSCO buffer layer displayed a smaller tetragonal character. Surface morphology observations by atomic force microscopy (AFM) revealed that PCT10 thin films with a LSCO buffer layer had a smoother surface and smaller grain size compared with thin films grown on a platinum-coated silicon substrate. Additionally, the capacitance versus voltage curves and hysteresis loop measurement indicated that the degree of polarization decreased for PCT10 thin films on a LSCO buffer layer compared with PCT10 thin films deposited directly on a platinum-coated silicon substrate. This phenomenon can be described as the smaller shift off-center of Ti atoms along the c-direction 〈001〉 inside the TiO6 octahedron unit due to the reduction of lattice parameters. Remnant polarization (Pr) values are about 30 μC/cm2 and 12 μC/cm2 for PCT10/Pt and PCT10/LSCO thin films, respectively. Results showed that the LSCO buffer layer strongly influenced the structural, microstructural and ferroelectric properties of PCT10 thin films.  相似文献   

11.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

12.
BiFeO3 (BFO) based ferroelectric solid solutions attract long-lasting research interests due to their multi-functionalities including electric/multiferroic/energy-storage properties. However, achievement of large ferroelectric polarization is still highly challenging in BFO based bulk ceramics due to large leakage. In this work, the structure and electrical properties of rare earth Nd- and PbTiO3 co-modified BFO ceramics have been explored. Based on high temperature in-situ X-ray diffraction and dielectric measurements, a preliminary ferroelectric phase diagram is established, depicting the morphotropic phase boundaries (MPB) and a critical temperature that cannot be correlated to any macroscopic phase transition. The effects of rare earth substitution on structure evolution have been investigated by comparing the results in this work and literature. The accomplishment of ferroelectric switching with giant ferroelectric polarization above 65 μC/cm2 is successfully achieved without resorting to quenching treatment. The MPB compositions demonstrate the maximum piezoelectric coefficients and the lowest coercive field, suggesting the “softening” effects. The domain evolutions suggest two coexisting phases in MPB composition distribute separately in different grains.  相似文献   

13.
《Ceramics International》2022,48(5):6347-6355
BiFe1-2xZnxMnxO3 (BFZMO, with x = 0–0.05) thin films were synthesized via sol–gel method. Effects of (Zn, Mn) co-doping on the structure, ferroelectric, dielectric, and optical properties of BiFeO3 (BFO) films were investigated. BFZMO thin films exhibit rhombohedral structure. Scanning electron microscopy (SEM) images indicate that co-doping leads to a decrease in grain size and number of defects. Leakage current density (4.60 × 10?6 A/cm2) of BFZMO film with x = 0.02 was found to be two orders of magnitude lower than that of pristine BFO film. Owing to decreased leakage current density, saturated PE curves were obtained. Maximum double remnant polarization of 413.2 μC/cm2 was observed for BFZMO thin film with x = 0.02, while that for the BFO film was found to be 199.68 μC/cm2. The reason for improved ferroelectric properties is partial substitution of Fe ions with Zn and Mn ions, which resulted in a reduction in the effect of oxygen vacancy defects. In addition, co-doping was found to decrease optical bandgap of BFO film, opening several possible routes for novel applications of these (Zn, Mn) co-doped BFO thin films.  相似文献   

14.
Sodium niobate thin films doped with manganese (NN), and NN films modified with 5 or 10 mol % calcium zirconate (CZ) on platinized silicon substrates were prepared by chemical solution deposition. The 250-nm-thick films crystallize in a perovskite phase with fine, equiaxed grains. The NN films exhibit well-shaped ferroelectric loops with a remanent polarization and coercive field of ~10 μC/cm2 and ~100 kV/cm, respectively. The modification with CZ strongly influences the ferroelectric response of the films: the remanent polarization progressively decreases to around 2.5 μC/cm2. The absence of an anti-ferroelectric response, which has previously been confirmed in bulk NN-CZ ceramics, is attributed to the nanoscale microstructure and residual thermal stresses. All the studied films exhibit a piezoelectric response with the highest piezoelectric d33 coefficient of 35 pm/V at 300 kV/cm bias field for the NN modified films with 5 mol % CZ, making them candidates for lead-free piezoelectric thin-film applications.  相似文献   

15.
Highly (110)-oriented BiFeO3-Bi(Zn/Ti)O3-SrTiO3 thin films were prepared on conductive Nb doped SrTiO3 substrates by pulsed laser deposition. The results demonstrate that the films show a pure perovskite phase with R3c symmetry. The films have a low dielectric loss, and a typical multiferroics character, possessing both of ferroelectric and ferromagnetic properties. The reduced dielectric loss is attributed to thermodynamic stabilization and charge compensation mechanisms in the BiFeO3 system. The remnant polarization (Pr) and the remnant magnetization (Mr) are ~ 46.2?μC/cm2 and ~ 4.6?emu/cm3 respectively.  相似文献   

16.
《Ceramics International》2015,41(8):9265-9275
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), polarization and magnetic measurements. Structural studies by XRD and Rietveld refinement reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 (BFO) where enhanced ferroelectric and magnetic properties are produced by internal strain. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Fatigue and retention free characteristics are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain.  相似文献   

17.
Bismuth ferrite (BiFeO3) thin films with Bi2O3 buffer layers were prepared on Si/SiO2/TiO2/Pt substrates by sol–gel‐derived spin‐coating method. The structural and electrical properties of BiFeO3 was effectively improved by adding a Bi2O3 buffer layers either at Pt/BiFeO3 interface or on BiFeO3 surface, also strongly depending on the positions and the annealing conditions of buffer layers. A 500°C‐annealed Bi2O3 buffer layer could act as a Bi source for compensating Bi volatilization and a diffusion barrier for species from BiFeO3. A near stoichiometric BiFeO3 with less defects and substrate contamination was obtained by employing a 500°C‐annealed Bi2O3 buffer layer in between Pt substrate and BiFeO3. The structure change in BiFeO3 led by such a buffer layer should result from the interfacial constraint between buffer layer and BiFeO3. Furthermore, this crystalline BiFeO3 specimen exhibited a highly (100)‐textured, where this preferred orientation was attributed to the accumulation of Bi at Pt/BFO interface. Therefore, the Pt/500°C‐annealed Bi2O3/BiFeO3/Pt thin film exhibited the good ferroelectric and magnetic properties. As compared to the usual method for controlling BiFeO3 composition by adding excess Bi, this study indicates the more advantages using a Bi2O3 buffer layer.  相似文献   

18.
The effect of Mn substitution on microstructure and electrical properties of epitaxial BiFeO3 (BFO) thin films grown by an all-solution approach was investigated. Raman analysis reveals that the Mn atoms substitution at Fe sites can result in Jahn-Teller distortion and thus lead to the weakness of long-range ferroelectric order. In addition, the break-down characteristics of BFO thin films are improved with the increase of Mn atoms content, although the leakage current is gradually increased. Meanwhile, the grain size, the dielectric constant and loss are also increased with the increase of Mn content. The P-E hysteresis loops and PUND results demonstrate that the intrinsic ferroelectric polarization is effectively improved with Mn atoms substitution as the grain size increased and Mn atoms play a role of nucleation sites. However, the ferroelectric properties are deteriorated with the excess substituted Mn content due to the higher leakage current.  相似文献   

19.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

20.
In this article, we report the substrate effect on ferroelectric and magnetic properties of epitaxial BiFeO3‐based thin films at room temperature. (La, Mn) cosubstituted BiFeO3 (BFOLM) thin films were deposited on differently lattice mismatched single‐crystal substrates to manipulate the strain states in the as‐deposited films. All the films with 30‐nm thick CaRuO3 bottom electrodes exhibited highly epitaxial growth behavior with a slightly monoclinic distorted lattice structure while their strain states are drastically different as confirmed by X‐ray reciprocal space mapping. These films possessed significantly different macroscopic ferroelectric properties with giant remanent polarization of 101 ± 2, 65 ± 2, and 48 ± 2 μC/cm2 for the films grown on SrTiO3, (La, Sr)(Al, Ta)O3, and LaAlO3, respectively. It is found that the room‐temperature magnetic properties are also in accordance with their strain state, having a reciprocal relationship with polarization. For example, the enhanced magnetization is associated with the suppressed polarization and vice versa. The stain tunability of multiferroic properties in BFOLM thin films are presumably ascribed to the polarization rotation and oxygen octahedral tilts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号