首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(13):14518-14525
To improve the oxidation resistance of carbon/carbon (C/C) composites, a dense HfC nanowire-toughened Si-Mo-Cr/SiC multilayer coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, thermal shock and isothermal oxidation resistance of the coating were investigated. HfC nanowires could improve the toughness of the coating and suppress the coating cracking. After incorporating HfC nanowires in the coating, both of the thermal shock and isothermal oxidation resistance of the coating were obviously improved. The multilayer coating with HfC nanowires could effectively protect C/C composites at 1773 K for 270 h, whose weight loss is only 0.19%. The good oxidation resistance is mainly attributed to the formation of a compound glass layer containing SiO2 and Cr2O3.  相似文献   

2.
To improve the oxidation resistances of SiC coated C/C composites by a pack cementation (PC) method at high temperature and alleviate the siliconization erosion of molten silicon on C/C substrate during the preparation of SiC coating, a SiO2-SiC reticulated layer with SiC nanowires was pre-prepared on C/C composites through combined slurry painting and thermal treatment before the fabrication of SiC coating. The presence of porous SiO2-SiC layer with SiC nanowires was beneficial to fabricate a compact and homogeneous SiC coating resulting from synergistic effect of further reaction between SiO2 and pack powders and the reinforcement of SiC nanowires. Therefore, the results of thermal shock and isothermal oxidation tests showed that the mass loss of modified SiC coating was only 0.02 % after suffering 50-time thermal cycles between room temperature and 1773 K and decreased from 5.95 % to 1.08 % after static oxidation for 49.5 h in air at 1773 K. Moreover, due to the blocking effect of SiO2-SiC reticulated layer on siliconization erosion during PC, the flexural strength of SiC coated C/C composites with SiO2-SiC reticulated layer increased by 64.8 % compared with the untreated specimen.  相似文献   

3.
The gradient HfB2 modified SiC coating was prepared on the surface of SiC-coated C/C composites by in-situ synthesis. Anti-oxidation behaviors of the coated C/C samples at 1773, 1873 and 1973?K were investigated. The results show that the gradient HfB2 modified SiC coatings possess excellent oxidation resistance, which can protect C/C substrates from oxidation for 800, 305 and 100?h at 1773, 1873 and 1973?K, respectively. In addition, with the oxidation temperature increasing, the evaporation of the Hf-Si-O glass layer and the active oxidation of SiC were accelerated, which is the reason for the worst oxidation resistance of the sample at 1973?K among the three temperatures.  相似文献   

4.
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperatures, a SiC-Si coating with micro-pores was prepared by slurry and heat-treatment on the surface of C/C composites with SiC-Si inner coating acquired by pack cementation (PC). The microstructure, phase composition, element distribution, and anti-oxidation properties of the dual-layer SiC-Si coating were investigated. The results show that a SiO2-SiC inlay structure was formed during the oxidation process, due to a large amount of SiO2 rapidly generated by the oxidation of SiC particles in the porous coating. The coating with this structure could inhibit the cracking of SiO2 glass and had a good resistance to oxygen diffusion. Moreover, the crack propagation was blocked by the remaining micro-pores of the coating. The coating could protect C/C composites against oxidation for 846 h only with the mass loss of 0.16 % at 1773 K in air.  相似文献   

5.
To protect carbon/carbon (C/C) composites from oxidation at elevated temperature, an effective WSi2-CrSi2-Si ceramic coating was deposited on the surface of SiC coated C/C composites by a simple and low-cost slurry method. The microstructures of the double-layer coatings were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analyses. The coating exhibited excellent oxidation resistance and thermal shock resistance. It could protect C/C composites from oxidation in air at 1773 K for 300 h with only 0.1 wt.% mass gain and endure the thermal shock for 30 cycles between 1773 K and room temperature. The excellent anti-oxidation ability of the double-layer WSi2-CrSi2-Si/SiC coating is mainly attributed to the dense structure of the coating and the formation of stable vitreous composition including SiO2 and Cr2O3 produced during oxidation.  相似文献   

6.
To improve the oxidation resistance of carbon/carbon (C/C) composites in a wide temperature range (1173–1773 K), a composite coating containing rich B2O3 glass was prepared on SiC-coated C/C composites by slurry dipping-densifying at low temperature. Borosilicate and SiO2 glasses acted as oxygen barriers at low and medium-high temperatures, respectively. Besides, Hf-oxides (HfO2, HfSiO4) ceramic particles improved the thermal stability of the glass and enhanced the crack resistance of glass layer. Therefore, the composite coating can effectively protect C/C composites against oxidation for 403 h at 1173 K, 723 h at 1473 K and 403 h at 1773 K with the mass gain of 3.77 g·m−2, 21.41 g·m−2 and 0.42 g·m−2, respectively. After 50 times thermal cycles between room temperature and 1773 K, the mass gain of the coated sample was 3.95 g·m−2 and the mass retention rate was up to 98.19 % during the thermos-gravimetric test from room temperature to 1773 K.  相似文献   

7.
An in-situ SiC-HfB2-Si ternary coating was deposited on C/C composites (C/Cs) via slurry panting plus gaseous Si infiltration composite method, to improve the oxidation and ablation resistance of C/Cs above 1773 K. The coating formation mechanism was investigated by microstructural analyses and thermo-dynamic calculations. The oxidation behavior of the coated specimens subjected either to high-temperature testing at 1773 K and 1973 K in static air furnace or to ablation testing with oxyacetylene torch upon ultra-high temperature service were studied, base on thermo-dynamic computations, numerical simulations and microstructure evolution. The SiC-HfB2-Si coating protected C/Cs against oxidation at 1773 K for more than 1507 h which is longer than that of the reported SiC-HfB2-based coatings, due to the as-prepared compact mosaic coating filled with HfB2-rich Si-based multiphase and the consequently formed dense Hf-Si-O oxide layer. Moreover, a good ablation resistance with relatively low linear and mass ablation rates of −0.72 μm/s and 0.07 mg/s, respectively, was achieved due to the stable oxide scale with high viscosity.  相似文献   

8.
《Ceramics International》2017,43(3):3238-3245
In this study, SiC coating for C/C composites was prepared by pack cementation method at 1773 K, and MoSi2-SiOC-Si3N4 as an outer coating was successfully fabricated on the SiC coated samples by slurry method at 1273 K. The microstructure and phase composition of the coatings were analyzed. Results showed that a porous β-SiC inner coating and a crack-free MoSi2-SiOC-Si3N4 coating are formed. Effect of Si3N4 content on the oxidation resistance of the coated C/C composites at 1773 K in air was also investigated. The weight loss curves revealed that introducing the appropriate proportion of Si3N4 could improve the oxidation resistance of coating. The MoSi2-SiOC/SiC coated C/C sample had an accelerated weight loss after oxidation in air for 20 h. However, the coating containing 45% Si3N4 could protect C/C composition from oxidation for 100 h with a minute weight loss of 0.63%.  相似文献   

9.
To improve the oxidation protective ability of carbon/carbon composites, ZrB2–SiC gradient coating was prepared on the surface of C/C composites by an in-situ reaction method. The ZrB2–SiC gradient coating consisted of an inner ZrB2–SiC layer and an outer ZrB2–SiC–Si coating. The phase composition and microstructures of the multiphase coating were characterized by XRD, EDS and SEM. Results showed that the inner coating is mainly composed of ZrB2 and SiC, while the outer multiphase coating is composed of ZrB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The oxidation behavior of the coated C/C composites at 1773 K in air was investigated. Results show that the gradient ZrB2–SiC oxidation protective coating could protect C/C from oxidation for 207 h with only (4.56±1.2)×10−3 g/cm2 weight loss, owing to the compound silicate glass layer with the existence of thermally stable phase ZrSiO4.  相似文献   

10.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

11.
《Ceramics International》2016,42(11):13041-13046
To protect carbon/carbon (C/C) composites against oxidation, a SiC-ZrB2-ZrC coating was prepared by the in-situ reaction between ZrC, B4C and Si. The thermogravimetric and isothermal oxidation results indicated the as-synthesized coating to show superior oxidation resistance at elevated temperatures, so it could effectively protect C/C composites for more than 221 h at 1673 K in air. The crystalline structure and morphology evolution of the multiphase SiC-ZrB2-ZrC coating were investigated. With the increase of oxidation time, the SiO2 oxide layer transformed from amorphous to crystalline. Flower-like and flake-like SiO2 structures were generated on the glass film during the oxidation process of SiC-ZrB2-ZrC coating, which might be ascribed to the varying concentration of SiO. The oxide scale presented a two-layered structure ~130 µm thick after oxidation, consisting of a SiO2-rich glass layer containing ZrO2/ZrSiO4 particles and a Si-O-Zr layer. The multiphase SiC-ZrB2-ZrC ceramic coating exhibited much better oxidation resistance than monophase SiC, ZrB2 or ZrC ceramic due to the synergistic effect among the different components.  相似文献   

12.
In order to improve the oxidation resistance of C/C composites, a ZrB2–SiC/SiC oxidation protective dual-layer coating was prepared by a pack cementation combined with the slurry paste method. The phase and microstructure of the coating were characterised by X-ray diffraction, scanning electron microscope and energy-dispersive spectrometer analyses. The anti-oxidation and thermal shock resistance of the coating were also investigated. It was found that the ZrB2–SiC/SiC coating could effectively improve the oxidation resistance of the C/C composites. The weight loss of the coated samples was only 1.8% after oxidation at 1773?K for 18?h in air. The coating endured 20 thermal shock cycles between 1773?K and room temperature with only 4.6% weight loss.  相似文献   

13.
《Ceramics International》2016,42(11):12573-12580
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperature, a SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical properties and oxidation resistance of the coating were investigated. After the introduction of SiC nanowires, the elastic modulus, hardness, and fracture toughness of the MoSi2-WSi2-SiC-Si coating were increased by 25.48%, 4.09% and 45.03%, respectively. The weight loss of the coated sample with SiC nanowires was deceased from 4.83–2.08% after thermal shock between 1773 K and room temperature for 30 cycles and the weight loss is only 3.24% after isothermal oxidation at 1773 K in air for 82 h. The good oxidation resistance of the coating is mainly attributed to that SiC nanowires can effectively inhibit the propagation of cracks in the coating by the toughening mechanisms including bridging and pull-out.  相似文献   

14.
Jun Li  Chen Lin  Yanhong Bi  Qiao Xiang 《Carbon》2007,45(13):2471-2478
A gradient self-healing coating consisting of three layers, SiC-B4C/SiC/SiO2, was examined as a multilayer protection for carbon/carbon composites. The inner layer was made of B4C and β-SiC, the middle layer was a SiC based layer, and the outer layer was SiO2 as an airproof layer. Both inner and middle layers were produced to be diphase structure by a pack cementation technique, and the outer airproof layer was prepared by hydrolyzing tetraethylorthosilicate. SEM and EDS investigations showed that the coating had a compositional gradient between B4C and SiC. The coating showed great self-healing properties from 500 °C to 1500 °C. The weight loss rate of the coated composites was less than 1.3% after 50 h at 1500 °C, and coating represented excellent thermal shock resistance at 1500 °C. The oxidation kinetics of coated carbon/carbon composites showed that the Arrhenius curve consisted of three parts with two broken points at about 700 °C and 1100 °C, and the three parts corresponded to three different self-healing mechanisms in different temperature regions.  相似文献   

15.
To improve the oxidation resistance of the carbon/carbon (C/C) composites, a TaB2–SiC–Si multiphase oxidation protective ceramic coating was prepared on the surface of SiC coated C/C composites by pack cementation. Results showed that the outer multiphase coating was mainly composed of TaB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The coating could protect C/C from oxidation for 300 h with only 0.26 × 10?2 g2/cm2 mass loss at 1773 K in air. The formed silicate glass layer containing SiO2 and tantalum oxides can not only seal the defects in the coating, but also reduce oxygen diffusion rates, thus improving the oxidation resistance.  相似文献   

16.
To protect carbon/carbon (C/C) composites against oxidation, MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites were prepared on them by supersonic plasma spraying. The MoSi2-based coatings primarily consist of MoSi2, Mo5Si3 and glassy SiO2. Only a few pinholes and some microcracks are observed on the surface and no through-thickness cracks penetrate the cross-section. Weight loss of the MoSi2-based coated specimens is only 1.14% after 400 h oxidation in air at 1773 K and the coated C/C composites remain intact after 11 thermal cycles between 1773 K and room temperature. The outstanding anti-oxidation ability is mainly attributable to the formation of SiO2-based layer on the surface of MoSi2-based coatings.  相似文献   

17.
To repair the damaged SiC coated C/C composites, a double-layer coating including a SiO2-Nd2O3 external layer (∼60 μm) and a Si-SiC inner layer (∼240 μm) was prepared by a slurry-based laser cladding technique, and the laser-ablation tests under two heat fluxes (23.89/39.81 MW m−2) were performed. The spectrophotometer, X-ray diffraction, scanning electron microscopy and 3D profilometer were used for characterization. For avoiding the secondary damage of laser-ablation, the laser-reflection of the repaired area was enhanced, which was conducive to the mitigation of mass and linear ablation. Combined with Finite Element Analysis, by raising the reflectivity, the surface and back temperature of samples could be reduced greatly by 1224 K and 983 K respectively, and plenty of ablation reactions could be avoided. Therefore, the SiO2-Nd2O3 coating possessed an excellent laser-ablation resistance and protected the C/C substrates from thermal damage and oxidation effectively.  相似文献   

18.
To protect carbon/carbon (C/C) composites against oxidation, a mullite coating was prepared on SiC precoated C/C composites by a hydrothermal electrophoretic deposition process. The phase composition, microstructure and oxidation resistance of the prepared mullite/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free mullite coatings. The mullite/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 322 h with a weight loss rate of only 4.89 × 10?4 g/cm2 h. The failure of the multi-layer coatings is considered to be caused by the volatilization of silicate glass layer, the formation of microholes and microcracks on the coating surface and the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 111.11 kJ/mol.  相似文献   

19.
To protect the carbon/carbon (C/C) composites from oxidation, an outer ultra‐high‐temperature ceramics (UHTCs) HfB2‐SiC coating was prepared on SiC‐coated C/C composites by in situ reaction method. The outer HfB2‐SiC coating consists of HfB2 and SiC, which are synchronously obtained. During the heat treatment process, the formed fluid silicon melt is responsible for the preparation of the outer HfB2‐SiC coating. The HfB2‐SiC/SiC coating could protect the C/C from oxidation for 265 h with only 0.41 × 10?2 g/cm2 weight loss at 1773 K in air. During the oxidation process, SiO2 glass and HfO2 are generated. SiO2 glass has a self‐sealing ability, which can cover the defects in the coating, thus blocking the penetration of oxygen and providing an effective protection for the C/C substrate. In addition, SiO2 glass can react with the formed HfO2, thus forming the HfSiO4 phase. Owing to the “pinning effect” of HfSiO4 phase, crack deflecting and crack termination are occurred, which will prevent the spread of cracks and effectively improve the oxidation resistance of the coating.  相似文献   

20.
《Ceramics International》2016,42(16):18411-18417
SiC coating with a thickness of 50–70 µm was prepared on the surface of C/C composites by in-situ reaction method. The SiC coated C/C composites were then tested in a wind tunnel where a temperature gradient from 200 to 1600 °C could be obtained to investigate their erosion behavior. The results of wind tunnel test indicated that the service life of C/C composites was prolonged from 0.5 to 44 h after applying the SiC coating. After the wind tunnel test, three typical oxidation morphologies, including glassy SiO2 layer, porous SiO2 layer and clusters of honeycomb-like SiO2 grains, were found on the SiC coated C/C composites. With the decrease of oxidation temperature, the amount of glassy SiO2 declined and the thermal stress increased, which induced the cracking followed by the degradation of the SiC coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号