首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demonstrated in YVO4:Tm3+,Yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffraction, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to transition of 2F5/2→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tm3+,Yb3+ phosphors might greatly enhance response of siliconbased solar cells.  相似文献   

2.
Herein, we reported novel Y4GeO8:Er3+,Yb3+ phosphors elaborated via conventional solid-state reaction, and we further explored their properties as optical thermometer by using fluorescence intensity ratio (FIR) method complemented by detailed analysis on crystal structure, up-conversion luminescence and energy transfer from Yb3+ to Er3+. Upon 980 nm laser excitation, Y4GeO8:Er3+,Yb3+ phosphors present 525, 547 and 659 nm emission bands assigned to the characteristic transitions of Er3+. Furthermore, Y4GeO8:Er3+,Yb3+ samples show outstanding temperature sensing performances. To be specific, the minimal temperature resolution is 0.03 K (303 K), and the relative sensitivity of FIR can be up to 1.152%/K (303 K). Hence, Y4GeO8:Er3+,Yb3+ phosphors can be possible candidates for thermometry devices.  相似文献   

3.
Novel Nd3+/Yb3+ co-doped sodium calcium silicate glasses were prepared by melting quenching method:Spectroscopic study was carried out as a function of doping content by fixing sensitizer(Nd3+) concentration to 0.2 mol% and adjusting activator(Yb3+) from 0 to 1.0 mol%.The energy transfer(ET)mechanisms between Nd3+and Yb3+ are discussed based on their energy levels and excitation powerdependence emission intensity.Results show that...  相似文献   

4.
In this work,calcium niobium gallium garnet(Ca3 Nb1.6875Ga3.1875O12-CNGG) ceramic samples singledoped with Tb3+ and co-doped with Tb3+ and Yb3+ ions were sintered by the solid-state reaction method.The structural characterization of the samples was carried out by X-ray diffraction measurements.The optimal concentration of Tb3+ ions corresponding to the maximum luminescence in the green spectral range in CNGG:...  相似文献   

5.
Cubic phase Tm3+/Yb3+:Y2O3 and Tm3+/Yb3+/Gd3+:Y2O3 phosphors were prepared by low temperature combustion technique for upconversion emission in UV-visible range.The 980 nm excitation has generated UV emission at 314 nm in tridoped phosphor due to the energy transfer from Tm3+ to Gd3+ion.Characteristic emission bands from Tm3+ are also observed in both the phosphors....  相似文献   

6.
Near infrared to near infrared (NIR–NIR) photo-stimulated persistent luminescence (PSPL) has shown excellent potential in high-resolution bioimaging for deep tissues. However, the PSPL in NIR-Ⅱ region (900–1700 nm) is still lacking. In this work, Ca2Ga2GeO7:Yb3+,Tb3+ (CGGYT) phosphor with unique low-dimensional crystal structure was synthesized by high-temperature solid–state reaction. Thanks to the carriers transferring from deep traps to shallow ones induced by low energy light, the 978 nm PSPL originating from 2F5/2 to 2F7/2 transition of Yb3+ induced by multimode stimulating (980 nm or WLED) is successfully realized after pre-excited by UV lamp. The NIR PSPL of the specimen can be repeatedly stimulated after placed in dark for 12 h. Moreover, the results indicate that codoping with Tb3+ can significantly enhance the NIR-II PSPL owing to the quantum cutting persistent energy transfer (QC PET) from Tb3+ to Yb3+. Our study points to a new direction for the future development of multimode PSPL materials for bioimaging or multimode optical storage applications.  相似文献   

7.
All of the samples were synthesized by sol-gel methods.Two approaches to charge compensation,(i) 2Ca2+→Yb3++M+,where M+ is an alkali ion like Li+,Na+ and K+,and(ii) indirect charge compensation:3Ca2+→2Yb3++vacancy,were studied in detail.It was found that charge compensation would be very beneficial for the growth of the grains,especially in Li+ ions added samples.All the grains were homogeneously spherical with less boundaries;in addition,a great variety of the absorption ability in different charge compens...  相似文献   

8.
Luminescence ratiometric thermometry based on rare earth(RE)ions has attracted great interest for the potential applications in many fields.But the improvement of the measurement sensitivity and accuracy is significantly restricted due to the small energy gap between thermally coupled levels(TCL).Here,a strategy striving for good thermometric properties of luminescent materials was designed by using the phosphors mixture composed of NaY(WO4)2:Nd3+-Yb3+and NaY(WO4)2:Er3+,which were prepared by secondary sintering method.Under the excitation of 980 nm lase r,the near-infrared(NIR)emissions(710-920 nm)from Nd3+ions are effectively strengthened when the temperature increases from 304 to773 K,whereas Er3+NIR luminescence centered at around 1536 nm is thermally quenched.The remarkably different response of NIR emissions to the thermal variation allows us to map temperature through the ratiometric method.By optimizing the dopant concentration of rare earth(RE)ions,a maximum sensitivity of 5.14%/K together with a measurement uncertainty of about 0.1 K is acquired at304 K,which is superior to the previously reported RE luminescence-based temperature sensors,indicating that the approach developed here can pave the way for achieving optical thermometry with desired properties.  相似文献   

9.
A series of YNbO4:Bi3+ and YNbO4:Bi3+/Er3+ phosphors were prepared by a conventional high temperature solid–state reaction method. The results of XRD and Rietveld refinement confirm that monoclinic phase YNbO4 samples are achieved. The down-/up-conversion luminescence of Er3+ ions was investigated under the excitation of ultraviolet light (327 nm) and near infrared light (980 nm). Under 327 nm excitation, broad visible emission band from Bi3+ ions and characteristic green emission peaks from Er3+ ions are simultaneously observed, while only strong green emissions from Er3+ ions are detected upon excitation of 980 nm. Remarkable emission enhancement is observed in down-/up-conversion luminescence processes by introducing Bi3+ ions into Er3+-doped YNbO4 phosphors. Pumped current versus up-conversion emission intensity study shows that two-photon processes are responsible for both the green and the red up-conversion emissions of Er3+ ion. Through the study of the temperature sensing property of Er3+ ion, it is affirmed that the temperature sensitivity is sensitive to the doping concentration of Bi3+ ions. By comparing the experimental values of the radiative transition rate ratio of the two green emission levels of Er3+ ions and the theoretical values calculated by Judd-Ofelt (J-O) theory, it is concluded that the temperature sensing property of Er3+ ions is greatly affected by the energy level splitting.  相似文献   

10.
Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applications. However, the low uptake efficiency of nanoparticles by cells has limited their applications. In this work, we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions. Using the same size NaYF4:20% Yb3+,2% Er3+,2% Ce3+ (the contents of rare earths elements are in molar fraction) nanoparticles as core, NaYF4:20% Yb3+,2% Er3+,2% Ce3+@NaYF4 core–shell structured nanorods (NRs) with different sizes of 60–224 nm were synthesized by thermal decomposition and hot injection method. Under excitation at 980 nm, a strong upconversion green emission (541 nm, 2H11/2 → 4I15/2 of Er3+) is observed for all samples. The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs. Under flow conditions, the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells. This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles.  相似文献   

11.
In this work,tunable white up-conversion luminescence was achieved in the Yb3+,Er3+,Tm3+,Ho3+ codoped Na3La(VO4)2 phosphors under 980 nm excitation.The emissions of three primary colors are mainly attributed to the 2H11/2/4S3/24I15/2 transitions of Er3+,1G43H6 transition of Tm3+,and5...  相似文献   

12.
The strong yellow upconversion (UC) light emission was observed in Ho3+/Yb3+co-doped Gd2Mo3O9 phosphor under the excitation of 980 nm diode laser. The phosphors were synthesized by the traditional soli...  相似文献   

13.
The near-infrared(NIR) persistent luminescence materials(PLMs) can remain long-lasting luminescence after removal of the excitation light,which permits bioimaging with high sensitivity owing to the absence of background fluorescence interference from in situ excitation.Recently,the NIR PLMs have aroused intensive research interest in bioimaging.However,the optimal excitation wavelength of current NIR PLMs is located in the ultraviolet region with shallow tissue penetration,making it difficult to...  相似文献   

14.
Investigation on the bright and stable upconversion(UC) phosphors with multicolor emissions is fundamental and significant for the frontier applications of display and tempe rature probe.He re,dive rse emitting colors with blue,cyan and yellowish green,which are caused by the energy transfer and crossrelaxation processes,are obtained by altering Er~(3+),Tm~(3+)and Yb~(3+) concentrations in Er~(3+)singly,Er~(3+)-Tm~(3+)-Yb~(3+)co-and tri-doped double perovskite La_2 ZnTiO_6(LZT) phosphors synthesized by a simple solid-state reaction.In addition,excellent infrared emission at 801 nm located at "first biological windo w" is collected in Tm~(3+)-Yb~(3+)co-doped phosphors.Meanwhile,the temperature sensing properties based on the thermally coupled levels(~2 H_(11/2)/~4S_(3/2)) of Er~(3+) ions were analyzed from 298 to 573 K of LZT:0.15 Er~(3+)/0.10 Yb~(3+)phosphor,demonstrating that the maximal sensitivity value is about56×10-4 K~(1-) at 448 K.All these results imply that this kind of UC material has potential applications in display,bioimaging and optical device.  相似文献   

15.
In the present study, Sm3+ activated inorganic orthophosphate CsMgPO4 (CSMP) phosphors were prepared by adopting a solid-state reaction method. The structural phase purity and morphological features were studied by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The molecular structure and vibrational modes were substantiated with the Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy characterization. The optical bandgap of the host and Sm3+ doped phosphors was deduced from the diffused reflectance (DR) spectra with a typical value of 5.72 eV and a small variation is observed with increasing concentrations. A systematic study of photoluminescence (PL) properties of Sm3+ doped CSMP phosphors was carried out. From the room temperature excitation and emission spectra, it is found that the phosphor emits in the orange rich red light under the suitable excitation of 402 nm in the UV region and concentration quenching occurs at x = 0.02 doping level. The emission peaks observed at around 562, 598 and 644 nm confirm the characteristic Sm3+ 4f-4f transitions. The temperature-dependent photoluminescence (TD-PL) of the x = 0.02 (optimum doping) is recorded from 30 to 210 °C, showing good thermal stability even at 150 °C. The thermal quenching mechanisms are discussed based on the configuration coordinate model of excitation and emission. The prepared phosphors are found to exhibit near thermal stability compared to the commercially available red phosphors. PL decay time and quantum efficiency were measured. The colour coordinates are found to lie in the orangish-red region of the colour space. Thus the prepared phosphors CSMP:x Sm3+ can be useful as a red component in designing UV excitable chip-based phosphor-converted white LED applications.  相似文献   

16.
The crystal structure and surface morphology of the Er3+/Yb3+/Na+:ZnWO4 phosphors synthesized by solid state reaction method were analyzed by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM) analysis.The frequency upconversion(UC) emission study in the developed phosphors was investigated by using 980 nm laser diode excitation.The effect of codoping in the Er3+:ZnWO4 phosphors on the UC emission intensity was studied.The UC emission bands that are exhibited in the blue(490 nm),green(530,552 nm),red(668 nm) and NIR(800 nm) region correspond to the 4F7/24I15/2.2H11/2,4S3/24I15/2,4F9/24I15/2 and 4I9/2→4I15/2 transitions,respectively.The temperature sensing performance of the Er3+-Yb3+-Na+:ZnWO4 phosphors was investigated based on the 2 H11/24I15/2 and 4S3/24I15/2 thermally coupled transitions of the Er3+ions.The photometric study was also carried out for the developed phosphors.  相似文献   

17.
NaBaPO4:Eu2+,Er3+ phosphors and Ag nano-particles (NPs) were prepared by the solid-state reaction and chemical reduction method, respectively. The fluorescence spectra and decay curves demonstrate the effective energy transfer from Eu2+ to Er3+ and the existence of three-photon quantum-cutting through two-step cross-relaxation of Er3+. The quantum-cutting emission is peaked at 1534 nm with a broad excitation band centered at 352 nm. Plasmon-enhanced quantum-cutting of NaBaPO4:Eu2+,Er3+ phosphors was realized by decorating Ag NPs. The largest enhancement factor is 1.395. It is hopeful to improve the photovoltaic conversion efficiency of Ge solar cells by using this phosphor.  相似文献   

18.
In this study, novel yellow-emitting fluorophosphate NaCa3Bi(PO4)3F phosphors doped with different concentrations of Dy3+ ions were first obtained via high-temperature solid-state reaction. The crystal structure, phase purity, particle morphology, photoluminescence (PL) properties, thermal stability, and luminescence decay curves of the resulting phosphors were then characterized in detail. Under the excitation of 349 nm, the three dominant peaks of the NaCa3Bi(PO4)3F:Dy3+ are centered at 480 nm (4F9/2-6H15/2), 577 nm (4F9/2-6H13/2), and 662 nm (4F9/2-6H11/2). The optimal doping concentration of Dy3+ ions in the NaCa3Bi(PO4)3F:xDy3+ phosphors is x = 5 mol%. The phosphors show excellent thermal stability with high activation energy (Ea = 0.32 eV). Eventually, the synthesized white light-emitting diode (w-LED) demonstrates the Commission International de L'Eclairage (CIE) chromaticity coordinates of (0.341, 0.334), a good correlated color temperature (CCT) of 5083 K, and a high color rendering index (Ra) of 92. Revealing its potential as yellow-emitting phosphors, the feasibility of the fabricated apatite-type NaCa3Bi(PO4)3F:Dy3+ fluorophosphate phosphors was confirmed for w-LEDs.  相似文献   

19.
Zirconium metal–organic frameworks ZrOBDC (where BDC = C6H4(COOH)2, terephthalic acid) doped and co-doped with rare earth ions Ln (ZrOBDC:Ln3+, where Ln3+ = Eu3+ and Tb3+ as well as Er3+ and Yb3+) were used as precursors for the design of tetragonal rare earth doped zirconia nanoparticles (t-ZrO2:Ln3+ NPs) through annealing process. Preparation, characterization and luminescence properties of ZrOBDC:Ln3+ and ZrO2:Ln3+ NPs were investigated. The as-obtained t-ZrO2:Ln3+ NPs have high purity with an average size of 20–30 nm. The luminescence spectra of ZrOBDC:Tb3+ and ZrOBDC:Eu3+ display strong green and red emission at around 544 and 611 nm which correspond to 5D4 → 7F5 and 5D0 → 7F2 transitions of Tb3+ and Eu3+ ions, respectively. The green and red up-conversion emissions of ZrO2:Er3+,Yb3+ NPs due to 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of the Er3+ ions are observed under 976 nm laser excitation.  相似文献   

20.
In this work,a series of Pr3+ ions doped(Sr,Ba)LaMgTaO6 phosphors were prepared and applied for plant growth lighting.Under 450 nm excitation,(Sr,Ba)LaMgTaO6:Pr3+ exhibits intense reddish emission at around 650 nm which is assigned to the 3p03F2 transition of Pr3+ ions.The luminescence intensity reaches to the maximum at 2.5 mol% Pr3+ doping content both in SrLaMgTaO6:Pr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号