首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(18):16659-16667
To protect carbon/carbon composites against long-term ablation, a bimodal microstructure ZrB2-MoSi2 coating, consisting of an outer ZrB2-MoSi2 layer modified by Y2O3 and an inner basal ZrB2-MoSi2 layer, was prepared by atmospheric plasma spraying. The microstructure, phase composition and ablation resistance of the proposed coating were investigated in detail. Results showed that the bimodal coating maintained integrity in structure except for phase composition. There was no visible interlayer between the inner ZrB2-MiSi2 layer and the outer modified one. Mass ablation rate of the bimodal microstructure ZrB2-MoSi2 coated C/C composites was −2.02 × 10−3 g/s under an oxyacetylene flame ablation at 1873 K for 600 s, which exhibited better ablation resistance than a single ZrB2-MoSi2 coating. The excellent ablation resistance was ascribed to the positive effect of Y2O3, which not only pined in the glassy phase and alleviated the volatilization of SiO2 glass phase by reacting with SiO2 to form high viscosity of Y2SiO5, but also stabilized ZrO2 and promoted its recrystallization and growth.  相似文献   

2.
《Ceramics International》2022,48(18):25788-25797
The Si-SiC-MoSi2 and Si-SiC coatings were proposed to repair the damaged MoSi2-SiC/SiC coated C/C composites by laser directed energy deposition. Laser ablation was used to assess the repair effect. Results showed that both the repaired coatings with dense structure could restore the geometric size of damaged area. Compared with the Si-SiC-MoSi2 coating, the Si-SiC repaired coating with higher laser reflectivity and more free Si could reduce the heat generation and enhance the heat dissipation during ablation, which lowered the maximum temperature by 347.49 K and 810.77 K under 300 W and 500 W ablation for 7 s separately, beneficial to avoid the secondary laser damage of the repaired area.  相似文献   

3.
Cf/LaB6 preform was used to prepare LaB6 doping C/C-ZrC-SiC composites by precursor infiltration and pyrolysis method, and effects of LaB6 on the microstructure and ablation resistance of C/C-SiC-ZrB2-LaB6 composites were investigated. Results show that LaB6 was reacted with Zr-precursor or its products to generate ZrB2 and other compounds. Thanks to the reactive sintering effect of LaB6, a compact ceramic skeleton was established in the substrate, which played a vital role in densifying and resisting ablation. The oxidation of the evenly-distributed La- and Zr-compounds produced the homogeneous oxide scale. The ternary phases of La2Si2O7, La0.71Zr0.29O1.65 and La2Zr2O7 were participated in the formation of the oxide scale, evolving the layer from SiO2 to SiO2-La2Si2O7 and then to SiO2-La2Si2O7-La0.71Zr0.29O1.65-La2Zr2O7-ZrO2 layer. After plasma ablation for 360 s, the mass and linear ablation rates were 0.3848 mg/s and 0.3694 μm/s, respectively. The seamless multi-phase layer can effectively prevent the composites from long-time ablation.  相似文献   

4.
New method to prepare Si-SiC coating on C/C composites by laser cladding (LC-Si-SiC) was established to improve the laser ablation resistance of the coating. Results showed that the LC-Si-SiC coating had lower roughness, better mechanical properties and superior laser-ablation resistance compared with the Si-SiC coating fabricated by the traditional coating preparation process: pack cementation (PC-Si-SiC). Due to the shorter heat treatment and less Si infiltration, the flexural strength of the LC-Si-SiC coated sample was 111.32 MPa, which was 144% higher than that of the PC-Si-SiC coated sample. Confirmed by finite element simulation, the LC-Si-SiC coating exhibited better laser-ablation resistance because of the “sweating cooling” mechanism. Under 23.89 MW?m?2 ablation for 7 s, the surface temperature of the LC-Si-SiC coated sample was 3046 K, which was 157 K lower than that of the PC-Si-SiC, causing the mass loss rate of the LC-Si-SiC coating (0.10%) was only 45.45% of the PC-Si-SiC coating.  相似文献   

5.
《Ceramics International》2017,43(15):12005-12012
To improve the ablation resistance of SiC coating, HfB2-SiC coating was prepared on SiC-coated carbon/carbon (C/C) composites by in-situ reaction method. Owing to the penetration of coating powders, there is no clear boundary between SiC coating and HfB2-SiC coating. After oxyacetylene ablation for 60 s at heat flux of 2400 kW/m2, the mass ablation rate and linear ablation rate of the coated C/C composites were only 0.147 mg/s and 0.267 µm/s, reduced by 21.8% and 60.0%, respectively, compared with SiC coated C/C composites. The good ablation resistance was attributed to the formation of multiple Hf-Si-O glassy layer including SiO2, HfO2 and HfSiO4.  相似文献   

6.
《Ceramics International》2020,46(6):7055-7064
In this work, ablation properties of NbC and NbC-25 mol.% ZrC coating, deposited on SiC-coated C/C composites by supersonic atmospheric plasma spraying, were tested by an oxyacetylene torch. Results showed that, for NbC coating, an unexpected smooth liquid film mostly composed of niobium suboxides (such as NbO2 and NbO), rather than pure Nb2O5, generated during ablation for 45 s. Mechanical erosion resulted from the molten SiO2, and the relatively low viscosity of the outer oxide layer owing to insufficiently high melting point of niobium suboxides were the key factors for the failure mechanism of NbC coating. While NbC–ZrC coating abated for 90 s has a 97.49 and 66.53% decrease of linear and mass ablation rate relative to NbC coating ablated for 45 s, since ZrO2 hindering the evaporation of SiO2 droplets, and more thermal-stable Nb–O–Zr liquid film endow (NbC–ZrC)/SiC/C/C composites with an outstanding anti-ablation property.  相似文献   

7.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   

8.
《Ceramics International》2023,49(2):1700-1709
Carbon fiber-reinforced silicon carbide (C/SiC) composites are important candidates for laser protection materials. In this study, ablation mechanism of C/SiC coated with ZrO2/Mo and ZrB2–SiC/ZrO2/Mo under laser irradiation was studied. ZrB2–SiC multiphase ceramic and ZrO2 ceramic were successfully coated on C/SiC composite by atmospheric plasma spraying technology with Mo as transition layer. Phase evolution and morphology of composite were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Moreover, ablation behavior of the composite was investigated by laser confocal microscopy. Results showed that ablation mechanism of C/SiC composite was controlled by phase transformation, thermal reaction, and thermal diffusion, with solid–liquid transition of ZrB2 and ZrO2 being dominant factor. Endothermic reaction and good thermal diffusivity of coatings were also important factors affecting ablation performance. Reflectivity effect of ZrO2 coating was limited under high-energy laser irradiation. Compared with ZrO2/Mo single-phase-monolayer coating, designed ZrB2–SiC/ZrO2/Mo coating showed better ablation performance, and breakdown time of C/SiC increased from 10 to 40 s. The depletion of liquid phase in molten pool was identified as an important factor responsible for rapid failure of C/SiC. The coating failed when the entire liquid phase was consumed within molten pool, followed by rapid damage of C/SiC substrate. Results of this study can provide theoretical guidance and research ideas for design and application of laser protective materials.  相似文献   

9.
In order to improve the ablation resistance of C/C-ZrC-SiC composites by reducing the damage of the protective oxide layer, novel "Z-pins like" silicon rods, which were designed and fabricated by liquid phase sintering, were utilised as a dissipative agent. The microstructure evolution and thermal dissipation behaviour were investigated after ablating above 2500 °C for 300 s. After the "Z-pins like" silicon rods were implanted, the anti-ablative property of the C/C-ZrC-SiC composites was drastically improved by the dissipative thermal protection mechanism. The linear ablation rate of the "Z-pins like" silicon rod-reinforced C/C-ZrC-SiC composite was -0.28 μm/s, which is 112.72% lower than the unmodified composite. Additionally, the actual ablative temperature dropped approximately 357 °C, which enabled abundant SiO2 to remain in the ablation centre. Furthermore, a dense SiO2-rich oxide layer with a low oxygen diffusion coefficient is formed that covers the entire ablative surface.  相似文献   

10.
Effects of La2O3 modification on the microstructure, mechanical and ablation properties of C/C-SiC composites were investigated. Experimental results show that a new La10(SiO4)6O3 phase was generated during heat treatment process. The presence of the La-compounds, namely La2O3 and La10(SiO4)6O3, had an important impact on the structure of reinforced skeleton and the molten oxide film, and thus strongly affected the mechanical and ablation properties of the composites. Excessive La addition induced the structural damage of the reinforced skeleton, resulting in weakened mechanical and ablation properties. The C/C-SiC composites with 25.65 wt.% La2O3 addition displayed better mechanical properties and the best ablation resistance. The La10(SiO4)6O3 phase could react with molten silica to form a viscous glass during ablation. The transformation of La-compounds into La2Si2O7 can reduce the ablation of SiO2 and enhance the glass film, so as to protect the composites from further ablation.  相似文献   

11.
To improve the oxidation resistances of SiC coated C/C composites by a pack cementation (PC) method at high temperature and alleviate the siliconization erosion of molten silicon on C/C substrate during the preparation of SiC coating, a SiO2-SiC reticulated layer with SiC nanowires was pre-prepared on C/C composites through combined slurry painting and thermal treatment before the fabrication of SiC coating. The presence of porous SiO2-SiC layer with SiC nanowires was beneficial to fabricate a compact and homogeneous SiC coating resulting from synergistic effect of further reaction between SiO2 and pack powders and the reinforcement of SiC nanowires. Therefore, the results of thermal shock and isothermal oxidation tests showed that the mass loss of modified SiC coating was only 0.02 % after suffering 50-time thermal cycles between room temperature and 1773 K and decreased from 5.95 % to 1.08 % after static oxidation for 49.5 h in air at 1773 K. Moreover, due to the blocking effect of SiO2-SiC reticulated layer on siliconization erosion during PC, the flexural strength of SiC coated C/C composites with SiO2-SiC reticulated layer increased by 64.8 % compared with the untreated specimen.  相似文献   

12.
《Ceramics International》2020,46(15):23457-23462
High-energy continuous wave (CW) laser ablation can cause severe damage to structural materials in an extremely short time, which generates considerable concern in terms of material safety. For the purpose of reducing or even eliminating such laser-induced damage, a novel composite coating consisting of a boron-modified phenolic formaldehyde resin incorporating ZrC and SiC has been designed and prepared. The experimental results reveal that ZrC and SiC are rapidly oxidized to ZrO2 and SiO2 respectively, leading to the formation of a white ceramic layer consisting of ZrO2 particles and melted SiO2. After ablation at 1000 W/cm2 for 50 s, elemental analysis indicates that no Si can be found in the central ablation zone because of gasification. A relatively compact ZrO2 layer is formed through the sintering of adjacent ZrO2 particles, which effectively improves the reflectivity of the coating from 7.3% (before ablation) to 63.5% (after ablation). The high reflectivity greatly reduces the absorption of laser energy. In addition, no obvious ablation defects are observed in the composite coating. The excellent anti-laser ablation performance of the coating makes it a promising system for protecting a material against the effects of long-term CW laser ablation.  相似文献   

13.
Considering practical environment, the bending property of C/C-ZrC-SiC, C/C-SiC and C/C composites after ablation was worthily studied. Results revealed that C/C-ZrC-SiC composites had a better laser ablation resistance and higher bending strength retention compared with C/C-SiC and C/C composites. The mass loss rate and ablated depth of C/C-ZrC-SiC composites was − 0.09% and 190.377 μm, respectively. The retention of bending strength of C/C-ZrC-SiC composites was 217.67 ± 44.12 MPa, whose strength decreased by 3.57% compared with that of as-prepared C/C-ZrC-SiC composites. The excellent anti-ablation property and residual bending strength of C/C-ZrC-SiC composites were attributed to the lowest ablative temperature and the effective protection of the ZrO2 grain and ZrO2-SiO2 layer, which were formed by oxidation of ZrC-SiC, evaporation of SiO2, migration of liquid ZrO2-SiO2 and the infiltrated as well as grown ZrO2. However, the fracture behavior transformation of composites from pseudo-plastic rupture to brittle rupture was induced by the ablation damage.  相似文献   

14.
An in-situ SiC-HfB2-Si ternary coating was deposited on C/C composites (C/Cs) via slurry panting plus gaseous Si infiltration composite method, to improve the oxidation and ablation resistance of C/Cs above 1773 K. The coating formation mechanism was investigated by microstructural analyses and thermo-dynamic calculations. The oxidation behavior of the coated specimens subjected either to high-temperature testing at 1773 K and 1973 K in static air furnace or to ablation testing with oxyacetylene torch upon ultra-high temperature service were studied, base on thermo-dynamic computations, numerical simulations and microstructure evolution. The SiC-HfB2-Si coating protected C/Cs against oxidation at 1773 K for more than 1507 h which is longer than that of the reported SiC-HfB2-based coatings, due to the as-prepared compact mosaic coating filled with HfB2-rich Si-based multiphase and the consequently formed dense Hf-Si-O oxide layer. Moreover, a good ablation resistance with relatively low linear and mass ablation rates of −0.72 μm/s and 0.07 mg/s, respectively, was achieved due to the stable oxide scale with high viscosity.  相似文献   

15.
Employed precursors of Y(NO3)3·6H2O and polycarbosilane, Y2O3 doped C/C-SiC composites were prepared by utilizing precursor infiltration and pyrolysis method. Results show that Y2O3 alters the composition of C/C-SiC composites with the generation of β-Y2Si2O7 and Y2O3 together with slight Y2SiO5, Y4.46(SiO4)3O and Y2C3. During ablation, β-Y2Si2O7 is stable and directly liquefied to rapidly fill in the empties in the substrate; the other three are transformed to δ-Y2Si2O7, evolving the oxide scale from SiO2-β-Y2Si2O7-Y2O3 (semi-fused) layer to SiO2-β-Y2Si2O7-δ-Y2Si2O7 ones. The ablation rates after ablation for 120 s were respectively 0.210 mg/s and 14.58 µm/s, severally decreased by 57.32% and 8.59% compared with that for 60 s. Further evaporation of SiO2 is suppressed and reconcilement of oxide layer is hence confirmed, implying decent anti-ablation resistance of oxide layer.  相似文献   

16.
《Ceramics International》2022,48(8):10911-10920
A novel MoSi2–Al2O3 composite coating was prepared on Mo-based TZM alloy by slurry sintering method. The oxidation behavior of the coating was evaluated at 1600 °C in static air. Microstructure and phase composition of the as-prepared and oxidized coatings were characterized, and the antioxidant mechanism of the coating at high temperature was discussed. A three-layer structure was observed in the as-prepared coating, consisting of a ~2 μm thick Mo5Si3 diffusion layer, a ~65 μm thick MoSi2 inner layer and a ~36 μm thick outer layer of mixture of MoSi2 and Al2O3. After oxidation at 1600 °C for 5 h, all MoSi2 phases were completely converted to intermediate silicide Mo5Si3 by solid-state diffusion, and the formed Mo5Si3 phase would be transformed into Mo3Si phase with further extending the oxidation time. Furthermore, a dense oxide layer of SiO2-mullite was formed on the specimen surface, which can effectively protect the material to further oxidation. The MoSi2–Al2O3 coating could protect the substrate effectively at 1600 °C for 20 h without failure. The enhanced oxidation resistance of MoSi2–Al2O3 coating is due to the formation of multi-layer structure containing a SiO2-mullite composite oxide outer layer with high thermal stability and low oxygen permeability.  相似文献   

17.
《Ceramics International》2016,42(11):13041-13046
To protect carbon/carbon (C/C) composites against oxidation, a SiC-ZrB2-ZrC coating was prepared by the in-situ reaction between ZrC, B4C and Si. The thermogravimetric and isothermal oxidation results indicated the as-synthesized coating to show superior oxidation resistance at elevated temperatures, so it could effectively protect C/C composites for more than 221 h at 1673 K in air. The crystalline structure and morphology evolution of the multiphase SiC-ZrB2-ZrC coating were investigated. With the increase of oxidation time, the SiO2 oxide layer transformed from amorphous to crystalline. Flower-like and flake-like SiO2 structures were generated on the glass film during the oxidation process of SiC-ZrB2-ZrC coating, which might be ascribed to the varying concentration of SiO. The oxide scale presented a two-layered structure ~130 µm thick after oxidation, consisting of a SiO2-rich glass layer containing ZrO2/ZrSiO4 particles and a Si-O-Zr layer. The multiphase SiC-ZrB2-ZrC ceramic coating exhibited much better oxidation resistance than monophase SiC, ZrB2 or ZrC ceramic due to the synergistic effect among the different components.  相似文献   

18.
《Ceramics International》2021,47(22):31251-31258
A modification of the precursor infiltration pyrolysis (PIP) method was explored to prepare the integrated doped ceramic matrix and coating by the added SiC nanowires layer and shape-stabilization process. The epitaxial layer of SiC nanowires provided surficial attachments for the precursor. And the shape-stabilization process aggregated loose ceramic particles into a coating. Then the SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C (S/SZ-CZ/C) composite was simply prepared by the modified PIP method. The bonding strength between the coating and matrix of the S/SZ-CZ/C composite was improved. Through the ablation test, the mass and linear ablation rate of the S/SZ-CZ/C composite were 0.46 mg/s and 0.67 μm/s, which were 60.34 % and 74.91 % lower than those of the SiC nanowire-reinforced C/C–ZrC (S/CZ/C) composite, respectively. The integration of the coating and matrix enabled the formation of a continuous oxide layer of molten SiO2 and ZrO2 in the ablation process, which helped to block the oxygen and heat during the ablation test. Thus the ablation resistance of the materials was systematically and effectively improved.  相似文献   

19.
To improve the oxidation resistance of carbon/carbon (C/C) composites at mid and high temperature, a gradient composite coating was designed and prepared on SiC-coated C/C composites by in situ formed-SiO2 densifying the porous SiC-ZrSi2 pre-coating. SiO2 gradient distribution was conducive to inhibiting the cracking of the coating. A dual-layer structure with the outer dense layer and the inner microporous layer was formed in the coating during densifying. The dense layer had excellent oxygen diffusion resistance and the microporous layer alleviated CTE mismatch between SiC inner coating and dense layer. Moreover, ZrSiO4 particles inhibited crack propagation and stabilized SiO2 glass. Therefore, the coating can protect the C/C composites from oxidation at 1473 K, 1573 K and 1773 K for 810 h, 815 h and 901 h, respectively. The coated samples underwent 30 thermal cycles between room temperature and 1773 K without mass loss, exhibiting good thermal shock resistance.  相似文献   

20.
In order to improve the oxidation resistance of Cf/Cs produced by chemical vapour infiltration, a multilayer coating based on silicon carbide and molybdenum disilicide was produced by two-step pack cementation technique. The inner SiC layer with a thickness up to 25 μm was obtained without promoted reaction additives by varying the composition, and thermal treatment conditions. The SiC/SiC-MoSi2 coating was produced with a thickness up to 80 μm by two step pack cementation, considering the effect of the inner layer characteristic. The enhancement of the oxidation resistance, observed in SiC/SiC-MoSi2 coated Cf/Cs by means of thermal analysis in flowing air up to 1500 °C, was due to the formation of SiO2 promoted by the passive oxidation of silicon carbide and molybdenum disilicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号