首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒋升  王平 《工具技术》2010,44(11):56-60
公差分析和公差分配是公差设计的两个重要方面。本文介绍了绿色制造的概念和关键技术,研究了绿色制造在公差设计中的应用,提出了在绿色制造技术下的公差分配优化的目标函数,并且论述了基于绿色制造的公差优化的方法。  相似文献   

2.
Tolerance allocation is a design tool for reducing overall cost of manufacturing while meeting target levels for quality. An important consideration in product design is the assignment of design and manufacturing tolerances to individual component dimensions so that the product can be produced economically and functions properly. The allocation of tolerances among the components of a mechanical assembly can significantly affect the resulting manufacturing costs. In this work, the tolerance allocation problem is formulated as a non-linear integer model by considering both the manufacturing cost of each component by alternate processes and the quality loss of assemblies so as to minimise the manufacturing cost. Metaheuristics techniques such as genetic algorithm and particle swarm optimisation are used to solve the model and obtain the global optimal solution for tolerance design. An example for illustrating the optimisation model and the solution procedure is provided. Results are compared with conventional technique and the performances are analysed.  相似文献   

3.
为满足网络化设计与制造要求,应用VB、ASP、数据库等技术开发基于制造业信息化服务平台的公差与配合应用技术系统.该系统为设计、制造、检验和标准化等工程技术人员提供公差与配合标准查询、公差与配合的设计计算、误差数据处理、公差与配合设计专家系统的应用、在线更新和后台管理等服务等.  相似文献   

4.
The technological and financial limitations in the manufacturing process are the reason for non-achievability of nominal dimension. Therefore, tolerance allocation is of significant importance for assembly. Conventional tolerance allocation methods are limited by an assumption that all parts are rigid. Every mechanical assembly consists of at least one or more flexible parts which undergo significant deformation due to inertia effect. Finite element analysis is used to determine the deformation of components in an assembly. Therefore, integration of statistical tolerance design with finite element analysis will guarantee that the optimal tolerance values of various components of the assembly obtained as end product of the tolerance design will remain within tolerance variation. Then the product can function as intended under a wide range of operating conditions for the duration of its life. In this paper, tolerance design of a piston cylinder assembly is done to demonstrate the proposed methodology.  相似文献   

5.
As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.  相似文献   

6.
An important problem that faces design engineers is how to assign tolerance limits. In practical applications, tolerances are most often assigned as an informal compromise between functionality, quality and manufacturing cost. Frequently, the compromise is obtained iteratively by trial and error. A more scientific approach is often desirable for better performance. In this paper, a genetic algorithm (GA) is used for the design of tolerances of machine elements to obtain the global optimal solution. The objective is to design the optimum tolerances of the individual components to achieve the required assembly tolerance, zero percentage rejection of the components and minimum cost of manufacturing. The proposed procedure using GA is described in this paper for two tolerance design optimization problems: gear train and overrunning clutch assemblies. Results are compared with conventional techniques and the performances are analyzed.  相似文献   

7.
基于有限元模型的汽车薄板焊装公差分配研究   总被引:2,自引:0,他引:2  
李兵  胡颖  唐辉 《机械科学与技术》2005,24(12):1463-1465,1481
当前的汽车车身薄板覆盖件焊装公差分配方法,通过收紧装配公差以期达到车身焊装高的质量要求,而公差过小不仅提高了制造成本,还往往超出了装配件制造能力。本文提出一种基于有限元模型的公差分配方法用于薄板装配,利用该方法可在装配前确定满足产品整体质量要求的最大允许加工公差,这样既可以降低装配件制造成本,又可以保证车身焊装的质量。此方法为汽车薄板件冲压工艺设计提供了依据。  相似文献   

8.
Integrated tolerance optimisation with simulated annealing   总被引:1,自引:1,他引:0  
Tolerance is one of the most important parameters in design and manufacturing. The allocation of design and machining tolerances has a significant impact on manufacturing cost and product quality. This article presents an analytical model for simultaneously allocating design and machining tolerances based on the least-manufacturing-cost criterion. In this study, tolerance allocation is formulated as a non-linear optimisation model based on the cost-tolerance relationship. A new global optimisation algorithm, simulated annealing, is employed to solve the non-linear programming problem. An example for illustrating the optimisation model and the solution procedure is provided.  相似文献   

9.
Tolerances naturally generate an uncertain environment for design and manufacturing. In this paper, a novel fuzzy based tolerance representation approach for modeling the variations of geometric features due to dimensional tolerances is presented. The two concepts of fuzzy theory and small degrees of freedom are combined to introduce the fuzzy-small degrees of freedom model (F-SDOF). This model is suitable for tolerance analysis of mechanical assemblies with linear and angular tolerances. Based on the fuzzy concept, a new index (called the assemblability index) is introduced which signifies the fitting quality of parts in the assembly. Graphical and numerical representations of tolerance allocation by this method are presented. The goal of tolerance allocation is to adjust the tolerances assigned at the design stage so as to meet a functional requirement at the assembly stage. The presented method is compatible with the current dimensioning and tolerancing standards. The application of the proposed methodology is illustrated through presenting an example problem.  相似文献   

10.
提出了一种基于最佳精度模型的机械臂机构精度综合的方法,利用遗传算法对D-H参数公差优化分配,为机械臂的精度设计提供理论依据。以一种基于双电机伺服驱动关节的7自由度协作机械臂为研究对象,机械臂的几何定位精度的设计目标为1.4 mm,建立该型机械臂末端执行器的几何定位误差模型;对参数误差进行敏感性分析,找出对机械臂末端执行器几何定位误差影响相对较大的参数误差;根据最佳精度数学模型,利用遗传算法对D-H参数公差优化分配;经过对误差仿真计算分析,机械臂的最大几何定位误差为1.226 7 mm,均值为0.485 9 mm,方差为0.216 5 mm,满足设计要求。为该机械臂的制造装配提供了理论参考依据。与基于最小成本模型的精度综合法相比,提出的精度综合方法不需要统计加工制造成本信息,能够确保机械臂的设计精度满足设计要求,可用于单个或者小批量生产制造机械臂的精度设计。  相似文献   

11.
To guarantee the successful transformation from product functional requirement to geometry constraints and finally to dimension constraints between components in a product, an evolutionary tolerance design strategy is proposed on the basis of automation technology in product structure design. In the first part of this paper, the theory of the growth design and the process of tolerance evolutionary design are introduced. Following the evolution of product structure, product tolerance grows from its initial state, defined by accuracy requirements, to its final state, defined as dimension tolerance and geometric tolerance. In this growing process, the basic units in the product growth design, known as functional surfaces and their nominal features, are used as evolutionary carriers. With the help of these basic units, the method for the construction of a two-layer correlation network is proposed. In the second part, the tolerance assertions to assist tolerance evolutionary design are given, based on which the basic process for an evolutionary design of dimensions chain and geometric tolerance are presented. In order to optimize the allocation of the dimension tolerance, a mathematical model is developed in which a correlated sensitivity function between the cost and the tolerance is created. In the model, the design cost, the manufacturing cost, the usage cost, and the depreciation cost of the product are used as constraints to the tolerance allocation. Considering these costs, a multifactor cost function to express quality loss of the product is developed and is applied into the model. The minimum cost is used as the objective function, and the depreciation cost in the objective function is expressed by the discount rate—terminology in economics. The aim was to achieve a final and ideal balance around assembly, manufacturing, and usage through the control of product precision. In the last part, the successful usage of the proposed tolerance evolutionary strategy in the incremental growth product design is demonstrated through a design example.  相似文献   

12.
通过研究生物生长与产品设计之间的相似性,提出了基于广义装配原理的生长型设计过程,研究了广义装配原理的三个理论构成。首先,在产品生长阶段,为实现生长过程中的自然选择,提出了以复杂度理论为控制因素的设计推理策略;其次,提出了功能公差设计理论,通过加工成本以及基于多因素的模糊质量损失成本体现广义装配成本,在确保产品功能的同时,以较低的装配与制造成本为公差的分配策略;在产品进化阶段,为保证产品良好的装配性能,采用了虚实结合设计技术。将以装配质量因素为核心的产品复杂度、精度以及制造、装配成本等众多设计因素并行集成于生长型设计过程中,实现了以全生命周期装配质量保障为核心的产品生长型设计。  相似文献   

13.
To reduce the cost of manufacturing systems, many studies of cost minimization have been performed. Since tolerance design significantly affects the manufacturers’ cost, the optimization of cost-tolerance allocation will be an important issue for reducing these costs. Costs incurred in a product life-cycle include manufacturing cost and quality loss. However, most cost-tolerance optimization models frequently ignore the concept of quality loss and may not lead to an accurate analysis of the tolerance. Until now, process capability analysis has been the tool used to evaluate the adequacy of a production tool in meeting a quality target. Hence, the concept of process capability analysis should be included into the cost-tolerance optimization model. In this study, a flexible cost-tolerance optimization model will be constructed by integrating the process capability index into the product life-cycle cost function. The constructed cost-tolerance optimization model simultaneously considers the manufacturing cost of the components, the process capability of the manufacturing operations, and the quality loss of products. The decision-maker can apply the proposed cost-tolerance optimization model to determine a reasonable tolerance with minimum total cost including consideration of the process capability .  相似文献   

14.
根据冲压模具零件图纸及技术要求进行工艺分析,通过模具工艺方案设计得出平面磨床成形磨削的加工方法和砂轮修整方法以及工艺尺寸计算,拟订平面磨形磨削工艺。同时,提出工件磨削步骤及注意事项,并对成形磨削工件进行精度检验及误差分析。实践证明:成形磨削工艺分析计算准确,公差分配合理,精度检验及误差分析有效,制造精度高。  相似文献   

15.
Functional tolerancing described in definition drawing of mechanical parts constitutes a contract to be respected by manufacturers. Process engineers have to choose process plans able to manufacture part respecting functional requirements and have to determine manufacturing specifications for each phase. Tolerance zone transfer method offers a three-dimensional algorithm of manufacturing specifications generation with International Organization for Standardization (ISO) standards. Analysis line method, developed in this article, establishes the calculus relation of the results of the tolerance chains according to the tolerances of manufacturing specifications to allow the tolerance synthesis. In this paper, the analysis line method is presented using an example. The aim is to show the hypotheses made during transfers in the context of ISO standards of tolerancing and to define accurately the datum reference frames used and deviations between these frames at particular points named analysis points.  相似文献   

16.
Producing products with multiple quality characteristics is always one of the concerns for an advanced manufacturing system. To assure product quality, finite automatic inspection systems should be used. Inspection planning to allocate inspection stations should then be performed to manage the limited inspection resource. Except for finite inspection station classes, in this work, the limited number of inspection stations, of each inspection station class, is considered for solving the inspection allocation problem in a multiple quality characteristic advanced manufacturing system. Since the product variety in batch production or job shop production increases to satisfy the changing requirements of the various customers, the tolerances specified will vary from time to time. This inspection allocation problem is solved using a unit cost model in which the manufacturing capability, inspection capability, and tolerance specified are concurrently considered for a multiple quality characteristic product. The situation of unbalanced tolerance design is also considered. The inspection allocation problem can then be solved according to customer requirements. Since determining the optimal inspection allocation plan seems to be impractical, as the problem size becomes large, two decision criteria (i.e. sequence order of workstation and tolerance interval) are employed separately to develop two different heuristic solution methods in this work. The performance of each method is measured in comparison with the enumeration method that generates the optimal solution. The result shows that a feasible inspection allocation plan can be determined efficiently. ID="A1"Correspondance and offprint requests to: Dr Yau-Ren Shiau, Department of Industrial Engineering, Feng-Chia University, 100 Wenhwa Road, Seatwen, PO Box 25–097, Taichung 407, Taiwan  相似文献   

17.
The tolerance allocation optimization method by fuzzy-set weight-center evaluation is used to derive the manufacturing difficulty coefficient, through quantifying the manufacturing condition factors which all affect the manufacturing cost, including the forming means of the blank, element size, machining surface features, operator’s skills, and material’s machinability. The coefficient is then converted into a weight factor used in the inversed square model representing the relationship between the cost and tolerance, a cost-objective function model based on optimal tolerance allocation according to the manufacturing conditions is thus established for optimizing and allocating the tolerances. Integrating this model into computer-aided-tolerance-allocation makes it more convenient, accurate, and feasible.  相似文献   

18.
在汽车制造工业产品开发过程中,需要同时考虑质量与成本之间的矛盾。盲目提高质量要求,将使产品制造成本增加;随意降低成本,则有可能影响质量,导致客户投诉和返修率上升。首先建立概念设计阶段的装配偏差分析模型,用来分析车身装配质量;并选取指数函数作为公差成本函数,以此为基础建立多目标优化模型,然后采用NSGA-II算法优化各个零件的公差。最后利用车身侧围框架案例阐述零件公差分配过程,获得了多目标函数的Pareto解集,取得了较好的优化效果。  相似文献   

19.
生长型设计中的功能公差设计理论   总被引:3,自引:0,他引:3  
在产品结构设计自动化技术基础上,研究生长型设计中公差进化设计的策略与原则,提出将产品功能要求转化成零部件之间的几何约束关系,并最终表达为对功能尺寸约束的功能公差设计理论。建立成本—公差敏感函数的数学模型,将产品设计、制造、使用以及技术折旧成本作为公差分配的控制约束,并在其中引入产品使用磨损模型,以经济学中的贴现率来表征技术折旧成本,以成本最低为目标函数,以合理的工艺能力指数、装配功能、装配质量作为约束条件,实现基于功能与成本的面向产品全生命周期的尺寸公差分配。最后,设计实例说明所提出的功能公差设计理论能够在生长型设计中成功应用。  相似文献   

20.
It is very important to know how to allocate tolerances economically for parts in a CAD/CAM system because this directly affects the machining costs of the parts. A new approach based on fuzzy comprehensive evaluation (FCE) and a genetic algorithm (GA) is presented to obtain a rational tolerance allocation for the parts. First, the current methods for tolerance allocation are reviewed in detail. Then, FCE is used to evaluate the machinability of a part; a new optimal model, which can fully exploit DFA (design for assembly) and DFM (design for manufacturing), is established by combining the functional sensitivity factors and machinability factors of parts. A genetic algorithm (GA) is developed and used to verify the feasibility of the above method; the computed result shows that the method can produce tolerance allocations economically and accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号