首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave plasma-enhanced chemical vapor deposition (MW-PECVD) has been employed to synthesize carbon nanostructures by using Fe (or Co, Ni)/γ-Al2O3 as catalysts and a mixture of benzene, hydrogen, and argon as precursors. By regulating the types of catalyst, the microwave incident power, the ratio and flux of the precursors, many morphologies such as ordinary geometric, helix-shaped, and planar spiral carbon nanotubes with aspect ratios of 100–1000 have been observed. Furthermore, two novel nanostructures, which are probably the missing link between onion-like carbon particles and nanotubes, have also been obtained. The striking feature of this new approach is the low synthesis temperature (<520°C) due to the non-equilibrium characteristic of microwave plasma operated at low pressure, which is crucial for some fascinating applications.  相似文献   

2.
A solo carbon nanotube (CNT) was successfully grown on nickel electrodes by a microwave plasma enhanced chemical vapor deposition (MPECVD) method equipped with an impedance-matched substrate holder with the reaction gases composed of hydrogen (H2), carbon dioxide (CO2), and methane (CH4) mixtures. An introduction of carbon dioxide gas before CNTs growth, the substrate temperature can easily be reached above 610 degrees C even heated at a low microwave power. This can be enunciated from fact that carbon dioxide inherits with higher bond energy for molecular dissociation, lower thermal conductivity, and higher heat capacity in comparing to other gases. The electron field emissions for randomly aligned CNTs and well-aligned CNTs grown by MPECVD and by radio frequency assisted hot-filament methods, respectively, are measured and compared. The higher field emission characteristic of the randomly aligned CNTs is presumed to be due to the protruded CNTs, which inheriting with less screening effect and manifesting with defects are crucial to play the effective emission sites.  相似文献   

3.
以带程序升温装置的管式电阻炉为实验装置,采用化学气相沉积法,在一定的工艺条件下裂解二茂铁与双鸭山精煤的混合物制备出多壁碳纳米管.采用透射电镜、Raman光谱以及X射线衍射技术对碳纳米管产物进行表征,同时研究了碳纳米管的生长机理.  相似文献   

4.
We report surface-bound growth of single-wall carbon nanotubes (SWNTs) at temperatures as low as 350 degrees C by catalytic chemical vapor deposition from undiluted C2H2. NH3 or H2 exposure critically facilitates the nanostructuring and activation of sub-nanometer Fe and Al/Fe/Al multilayer catalyst films prior to growth, enabling the SWNT nucleation at lower temperatures. We suggest that carbon nanotube growth is governed by the catalyst surface without the necessity of catalyst liquefaction.  相似文献   

5.
Highly aligned carbon nanotubes (CNTs) were grown under high sheath electric field and gas pressure conditions by the radio frequency (RF) plasma-enhanced direct current (DC) plasma chemical vapor deposition (CVD) method due to a stabilized DC discharge. The uniform growth of highly aligned multi-walled CNTs was achieved over the entire surface area of a 50 × 50 mm2 iron foil. The growth of multi-walled CNTs on a 75 × 75 mm2 iron foil was also confirmed.  相似文献   

6.
Plasma enhanced chemical vapor deposition (PECVD), which enables growth of vertically aligned carbon nanotubes (CNTs) directly onto a solid substrate, is considered to be a suitable method for preparing CNTs for nanoelectronics applications such as electron sources for field emission displays (FEDs). For these purposes, establishment of an efficient CNT growth process has been required. We have examined growth characteristics of CNTs using a radio frequency PECVD (RF-PECVD) method with the intention to develop a high efficiency process for CNT growth at a low enough temperature suitable for nanoelectronics applications. Here we report an effect of pretreatment of the catalyst thin film that plays an important role in CNT growth using RF-PECVD. Results of this study show that uniform formation of fine catalyst nanoparticles on the substrate is important for the efficient CNT growth.  相似文献   

7.
合成了液态碳硅烷并对其结构进行了分析;采用化学气相沉积工艺,以自制的液态碳硅烷为先驱体,分别在850℃和900℃的较低温度下制得了SiC粉体,并对产物进行了IR、XRD和SEM分析.结果表明,850℃产物中含有未分解完全的有机基团,900℃产物为较纯的部分结晶的纳米SiC粉体,粒度为50~70nm.  相似文献   

8.
Guo L  Singh RN 《Nanotechnology》2008,19(6):065601
Hexagonal boron nitride nanotubes (BNNTs) were synthesized at a low substrate temperature of 800?°C on nickel (Ni) coated oxidized Si(111) wafers in a microwave plasma-enhanced chemical vapor deposition system (MPCVD) by decomposition and reaction of gas mixtures consisting of B(2)H(6)-NH(3)-H(2). The 1D BN nanostructures grew preferentially on Ni catalyst islands with a small thickness only. In situ mass spectroscopic analysis and optical emission spectroscopy were used to identify the gas reactions responsible for the BNNT formation. The morphology and structural properties of the deposits were analyzed by SEM, TEM, EDX, SAD and Raman spectroscopy. The growth mechanism of the BNNTs was identified.  相似文献   

9.
Multi-walled carbon nanotubes (MWNTs) were synthesized by infusing alcohol into a tube furnace. A nickel catalyst preparation was made by a reduction reaction of NiO powder by ethanol vapor at 450 °C for 30 min before the MWNT synthesis at 700 °C for 1–18 h. The as-grown MWNTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy. Large quantities of MWNTs, having a diameter in the range of 20–50 nm can be produced from ethanol vapor without a carrier gas by this technique. A method to measure an electrical resistance of bulk MWNTs was carried out under stress between two conducting plates. The result shows an exponentially correlation between the resistivity and the D-band/G-band intensity ratio, suggesting that the measuring method provides a simple tool to monitor the degree of structural defects of MWNTs.  相似文献   

10.
Hot-wire chemical vapor deposition of carbon nanotubes   总被引:2,自引:0,他引:2  
Hot-wire chemical vapor deposition (HWCVD) has been employed for the continuous gas-phase generation of both carbon multi-wall and single-wall nanotube (MWNT and SWNT) materials. Graphitic MWNTs were produced at a very high density at a synthesis temperature of 600 °C. SWNTs were deposited at a much lower density on a glass substrate held at 450 °C. SWNTs are typically observed in large bundles that are stabilized by tube–tube van der Waals’ interactions. However, transmission electron microscopy analyses revealed only the presence of isolated SWNTs in these HWCVD-generated materials.  相似文献   

11.
以甲烷为碳源,co-Mo/MgO为催化剂,通过气相化学沉积制备了直径均匀的多壁碳纳米管(MWC-NTs).采用溶胶-凝胶法所制双金属催化剂的组成为Co∶Mo∶MgO=5∶20∶75(质量比).热重分析表明多壁碳纳米管产率高达313.67%.催化剂对于多壁碳纳米管生长的选择性是91.17%(其余为无定形碳).透射电子显微镜分析显示:催化剂七生长的MWCNTs平均直径为6.2±0.5nm(平均±标准偏差).通过稀酸的简单纯化处理,纯化样品的催化剂残存率降至0.72%.  相似文献   

12.
13.
Hydrogenated amorphous carbon (a-C:H) films were deposited by plasma enhanced chemical vapor deposition from methane, argon diluted methane, and nitrogen diluted methane at 26.7 Pa with a 13.56 MHz RF power supply. In this pressure regime, multiple-scattering of carbon species within the plasma phase is expected during the transport to the substrates placed on both the driven and the earthed electrodes. These films were analyzed using UV-VIS optical transmittance, monochromatic ellipsometry, Raman spectroscopy and current-voltage measurements. From these results, the effect of the plasma conditions and the effective flux of the carbon species controlled by the input power through the negative self bias are found to be important in the deposition process. The growth conditions at the higher pressure regime are important to synthesize a-C:H films from low energetic carbon species, since it reduces the defect density and improves the quality of the films. Furthermore, the effect of nitrogen on the growth conditions of a-C:H:N films is observed.  相似文献   

14.
In this work, we present a parametric study on the low temperature synthesis of single-walled carbon nanotubes (SWNTs) in an inductively coupled plasma (ICP) CVD system using dry bi-layered catalytic thin-films (Fe/Al and Ni/Al, deposited by electron-beam evaporation method) as the catalysts. With a low substrate temperature of 550 degrees C and above, SWNTs were successfully synthesized on both catalysts, as revealed from the characteristic peaks of SWNTs in the micro-Raman spectra. By the reduction of plasma power and the shortening of the process times, the lowest synthesis temperature of SWNTs achieved in our system was approached to 500 degrees C on Ni/Al catalysts; on the other hands, the lowest temperature for Fe/Al catalysts was 550 degrees C. Our results suggest that as compared with Fe/Al, Ni/Al is more favorable for plasma-enhanced CVD (PECVD) synthesis of SWNTs at low temperatures. This work can be used for further improvements and better understanding on the production processes of SWNTs by PECVD methods.  相似文献   

15.
Wang H  Ren ZF 《Nanotechnology》2011,22(40):405601
During the growth of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD), plasma etching is the crucial factor that determines the growth mode and alignment of the CNTs. Focusing on a thin catalyst coating (Ni = 5 nm), this study finds that the CNT growth by PECVD goes through three stages from randomly entangled (I-CNTs) to partially aligned (II-CNTs) to fully aligned (III-CNTs). The I-CNTs and II-CNTs are mostly etched away by the plasma as time goes by ending up with III-CNTs as the only product when growth time is long enough. However, with a thickness of the catalyst coating of 10 nm or more, neither I-CNTs nor II-CNTs are produced, but III-CNTs are the only type of CNTs grown during the whole growth process. During the growth of III-CNTs, the catalyst particles (Ni) stay on the tips of each of the aligned CNTs and act as a 'safety helmet' to protect the CNTs from plasma ion bombardment. On the other hand, it is also the plasma that limits the growth of III-CNTs, since the plasma eventually etches all the catalytic particles out and stops the growth.  相似文献   

16.
Carbon nanotube structures such as tube diameter, growth site, and formation density are controlled using radio-frequency (RF, 13.56 MHz) plasma enhanced chemical vapor deposition (RF-PECVD) method. We have produced uniformly well-aligned multi-walled carbon nanotubes (MWNTs) grown over the large scale area and linearly arrayed MWNTs grown in a selected area without any highly-sophisticated patterning process. In our RF-PECVD experiment, furthermore, individually grown single-walled carbon nanotubes (SWNTs) or their thin bundles are synthesized for the first time within the scope of the PECVD methods. These results indicate that PECVD method provides the high potential for the further development of nano-technology.  相似文献   

17.
Multi-walled carbon nanotubes and one-dimensional wire-like nanostructures have been synthesized using acetylene as carbon sources with a metal-free mild chemical vapor deposition process. It shows that anisotropic carbon nanostructures can interact to form nanotubes by self-function. Furthermore, the detailed microscopic observation of the obtained nanostructures indicates that the development of fully hollow carbon nanotubes should undergo a quite complex physical and chemical transformation process, and their formation abides by the “particle-wire-tube” stepwise evolution mechanism. In this process, the one-dimensional wire-like nanostructures can be viewed as the intermediate stages of carbon nanotube formation, which record traces about nanotube evolution.  相似文献   

18.
Carbon nanotubes have been grown by chemical vapor deposition at 650°C in an argon atmosphere using a butane-propane mixture and a nickel catalyst and have been characterized by scanning and transmission electron microscopy and Raman spectroscopy. The results indicate that the multiwalled nanotubes have an imperfect graphite-like structure with a conical supramolecular configuration. A phenomenological technique is proposed for statistical analysis of the state of carbon nanotubes in measurements of the intensity of the defect zone D in their Raman spectra.  相似文献   

19.
采用一种改进的化学气相沉积法在炭纤维表面制备碳纳米管。为了提高炭纤维表面的润湿性能,炭纤维在浸渍之前先在CVD设备中在真空下973 K的高温处理,然后在硝酸和浓硫酸体积比为3∶1的混合酸中酸处理30 min。而改进的化学气相沉积法关键在于让催化剂的还原步骤和碳纳米管的生长步骤同时进行。这样通过减小过渡金属元素与炭纤维之间的接触时间从而降低了它们之间的相互扩散,在确保了炭纤维本身的力学性能下降程度明显小于用普通化学气相法制备的情况下生长出长且茂密的碳纳米管阵列。另外,经过对工艺参数的优化发现当用乙醇作溶剂,Fe(NO3)3.9H2O溶度为100 mmol/L,氢气和碳源气体比值为4/1,而生长时间为30 min时得到最好的碳纳米管阵列。  相似文献   

20.
Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号