首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain insight into the role of striatal dopamine in basal ganglia functioning, dopaminergic drugs alone and in combination with the glutamate receptor agonist kainic acid were infused in the lateral striatum via a microdialysis probe, while single-unit recordings of substantia nigra reticulata neurons were made in chloral hydrate-anaesthetized rats. Striatal infusion of dopaminergic drugs did not significantly affect the firing rate of substantia nigra reticulata neurons, which was related to the low activity of striatal cells under basal conditions, illustrated by the lack of effect of striatal infusion of TTX on substantia nigra reticulata activity. Under glutamate-stimulated conditions, striatal infusion of d-amphetamine potentiated the inhibition of substantia nigra reticulata neurons induced by striatal kainic acid. Thus, under stimulated but not basal conditions, the modulatory role of dopamine in the striatum could be demonstrated. Dopamine potentiated the inhibitory effect of striatal kainic acid on the firing rate of the basal ganglia output neurons.  相似文献   

2.
During the last two decades, evidence has accumulated to demonstrate the existence, in the central nervous system, of an endogenous mechanism that exerts an inhibitory control over different forms of epileptic seizures. The substantia nigra and the superior colliculus have been described as key structures in this control circuit; inhibition of GABAergic neurons of the substantia nigra pars reticulata results in suppression of seizures in various animal models of epilepsy. The role in this control mechanism of the direct GABAergic projection from the striatum to the substantia nigra and of the indirect pathway, from the striatum through the globus pallidus and the subthalamic nucleus, was examined in a genetic model of absence seizures in the rat. In this model, pharmacological manipulations of both the direct and indirect pathways resulted in modulation of absence seizures. Activation of the direct pathway or inhibition of the indirect pathway suppressed absence seizures through disinhibition of neurons in the deep and intermediate layers of the superior colliculus. Dopamine D1 and D2 receptors in the nucleus accumbens, appear to be critical in these suppressive effects. Along with data from the literature, our results suggest that basal ganglia circuits play a major role in the modulation of absence seizures and provide a framework to understand the role of these circuits in the modulation of generalized seizures.  相似文献   

3.
Following pulse labeling with [3H]arachidonic acid ([3H]AA), its incorporation pattern in brain reflects regional changes in neurotransmitter signal transduction using phospholipase A2, that is, functional activity. In a rat model of Parkinson's disease, unilateral 6-hydroxydopamine lesion in the substantia nigra, [3H]AA acid incorporation from blood was increased in cerebral cortex, caudate putamen, globus pallidus, entopeduncular nucleus, subthalamic nucleus and substantia nigra pars reticulata ipsilateral to the lesion. This increased [3H]AA incorporation likely reflects disinhibition of basal ganglia and cortical circuits secondary to absent inhibitory nigrostriatal dopaminergic input.  相似文献   

4.
We studied sequential changes in electrophysiological profiles of the ipsilateral substantia nigra neurons in an in vitro slice preparation obtained from the middle cerebral artery-occluded rats. Histological examination revealed marked atrophy and neurodegeneration in the ipsilateral substantia nigra pars reticulata at 14 days after middle cerebral artery occlusion. Compared with the control group, there was no significant change in electrical membrane properties and synaptic responses of substantia nigra pars reticulata neurons examined at one to two weeks after middle cerebral artery occlusion. On the other hand, there was a significant increase in the input resistance and spontaneous firing rate of substantia nigra pars compacta neurons at 13-16 days after middle cerebral artery occlusion. Furthermore, inhibitory postsynaptic potentials evoked by stimulation of the subthalamus in substantia nigra pars compacta neurons was suppressed at five to eight days after middle cerebral artery occlusion. At the same time excitatory postsynaptic potentials evoked by the subthalamic stimulation was increased. Bath application of bicuculline methiodide (50 microM), a GABA(A) receptor antagonist, significantly increased the firing rate of substantia nigra pars compacta neurons from intact rats. These results strongly suggest that changes in electrophysiological responses observed in substantia nigra pars compacta neurons is caused by degeneration of GABAergic afferents from the substantia nigra pars reticulata following middle cerebral artery occlusion. While previous studies indirectly suggested that hyperexcitation due to deafferentation from the neostriatum may be a major underlying mechanism in delayed degeneration of substantia nigra pars reticulata neurons after middle cerebral artery occlusion, the present electrophysiological experiments provide evidence of hyperexcitation in substantia nigra pars compacta neurons but not in pars reticulata neurons at the chronic phase of striatal infarction.  相似文献   

5.
In the human brain, receptor binding sites for angiotensin are found in the striatum and in the substantia nigra pars compacta overlying dopamine-containing cell bodies. In contrast, angiotensin-converting enzyme occurs in the substantia nigra pars reticulata and is enriched in the striosomes of the striatum. In this study, using quantitative in vitro autoradiography, we demonstrate decreased angiotensin receptor binding in the substantia nigra and striatum of postmortem brains from patients with Parkinson's disease. In the same brains the density of binding to angiotensin-converting enzyme shows no consistent change. We propose, from these results, that angiotensin receptors in the striatum are located presynaptically on dopaminergic terminals projecting from the substantia nigra. In contrast, the results support previous studies in rats demonstrating that angiotensin-converting enzyme is associated with striatal neurons projecting to the substantia nigra pars reticulata. These findings raise the possibility that newly emerging drugs that interact with the angiotensin system, particularly converting enzyme inhibitors and new nonpeptide angiotensin receptor blockers, may modulate the brain dopamine system.  相似文献   

6.
The substantia nigra is innervated by massive inhibitory GABAergic projections from the striatum and globus pallidus, deafferentation of which is supposed to lead to anterograde trans-synaptic degeneration of the nigral neurons. An immunohistochemical method was used to examine the induction of 72,000 mol. wt heat shock protein in the substantia nigra following cerebral hemitransection or transient middle cerebral artery occlusion. At three and four days post-transection, strong immunoreactivity for 72,000 mol. wt heat shock protein was found in the ipsilateral substantia nigra pars reticulata. Light microscopic observation revealed a number of pars reticulata neurons showing strong immunoreactivity for 72,000 mol. wt heat shock protein in their perikarya and proximal processes. In addition, Golgi-like stained neurons with dystrophic features were occasionally observed in the ipsilateral substantia nigra pars reticulata. The immunoreactivity for 72,000 mol. wt heat shock protein in the ipsilateral pars reticulata gradually declined and almost disappeared by 15 days after transection. No apparent induction of 72,000 mol. wt heat shock protein was found in the substantia nigra pars compacta throughout the time period examined. Massive striatal ischemic injury produced by transient middle cerebral artery occlusion also induced expression of 72,000 mol. wt heat shock protein in the pars reticulata neurons three and four days postoperatively. These findings suggest that deafferentation of the striatal or striatopallidal inputs per se is a harmful stress for the substantia nigra pars reticulata neurons, inducing 72,000 mol. wt heat shock protein synthesis. The present data may contribute to our understanding of the molecular basis of the pathomechanism of the transneuronal regression of substantia nigra pars reticulata neurons, which may occur after removal of inhibitory GABAergic inputs.  相似文献   

7.
There is increasing evidence that adenosine (ADO) and dopamine (DA) interact directly in the basal ganglia via actions at ADO A2a and DA D2 receptors, respectively. The purpose of this study was to determine 1) the extent to which these receptors modulate endogenous GABA release in discrete regions of the rat basal ganglia and 2) whether GABA release is modulated by a direct and opposing interaction between ADO A2a and DA D2 receptors. Tissue slices of striatum (STR) containing globus pallidus (GP; STR/GP) and micropunches of STR, GP, and substantia nigra pars reticulata (SNr) were studied. Radioligand binding demonstrated that ADO A1, ADO A2a, and DA D2 receptors were present in each of the tissue preparations with the exception of SNr, in which ADO A2a receptors were not detected. Stimulation of ADO A2a receptors with CGS 21680 (1-10 nM) increased electrically stimulated GABA release in STR/GP slices and GP micropunches. Consistent with the lack of A2a receptors in SNr, CGS 21680 had no effect on GABA release from this region. In contrast, stimulation of DA D2 receptors with N-0437 (1-100 nM) inhibited evoked GABA release from STR/GP slices and both GP and SNr micropunches. The D2-mediated inhibition of GABA release in GP was abolished in the presence of CGS 21680 (10 nM). These experiments demonstrate that stimulation of ADO A2a and DA D2 receptors has opposing effects on endogenous GABA release in STR and GP. These opposing actions may explain the antagonistic interactions between ADO and DA that have been observed in behavioral studies and support the hypothesis that the striatopallidal efferent system is an important anatomical substrate for the A2a/D2 receptor interaction.  相似文献   

8.
This paper reviews the organization of the avian and mammalian striatum. The striatum receives input from virtually the entire rostrocaudal and mediolateral expanse of the cerebral cortex. The corticostriatal projections appear to be glutamatergic, forming excitatory synapses in the striatum. Another major projection to the avian striatum that also appears to be glutamatergic stems from a set of nuclei in the dorsal zone of the avian thalamus that are comparable to the mammalian intralaminar, mediodorsal, and midline nuclei. Furthermore, the striatum receives a massive projection from dopaminergic neurons of the ventral tegmental area and substantia nigra in the midbrain tegmentum. In return, the midbrain tegmentum receives a direct GABAergic/substance P-ergic/ dynorphinergic projection from the striatum, as well as an indirect one formed by GABAergic/substance P-ergic/ dynorphinergic and GABA-ergic/enkephalinergic striatal neurons projecting to the pallidum in the first step, and pallidal GABAergic/LANT6/parvalbumin neurons projecting to the midbrain tegmentum in the second step. In addition to its projection neurons, the striatum possesses GABAergic and cholinergic interneurons. One motor output pathway of the striatum runs via the pallidum and dorsal thalamic ventral tier nulei to the motor cortex. In addition to this pathway, birds possess a major descending pathway from the basal ganglia to the tectum via the GABAergic nucleus spiriformis lateralis in the pretectum. On hodological and topological grounds, similar nuclei, although not GABAergic, can be found in mammals. Finally, an other striatal motor output is formed by a sequential GABAergic pathway from the basal ganglia via the substantia nigra to the tectum. In conclusion, it appears that the organization of the avian and mammalian basal ganglia is similar rather than different.  相似文献   

9.
The ventral pallidum receives major inputs from the nucleus accumbens, a striatal region related to the prefrontal cortex. The ventral pallidum, through its projections to the mediodorsal nucleus of the thalamus, has been considered as the main output structure of the prefrontal-basal ganglia circuits. However, as shown recently, the ventral pallidum also sends efferents to the subthalamic nucleus and the substantia nigra, suggesting that it could participate in intrinsic basal ganglia circuits. The aim of the present investigation was to determine the position of the ventral pallidum in the prefrontal-basal ganglia circuit originating from the prelimbic and medial orbital areas. Following injections of biocytin (an anterograde tracer) into the region of the core of the nucleus accumbens receiving excitatory inputs from the prelimbic and medial orbital areas, axonal terminal fields were observed in a delineated dorsal region of the ventral pallidum. When the biocytin injections were made into this ventral pallidal region, anterogradely labelled fibres were observed in both the dorsomedial substantia nigra pars reticulata and the medial subthalamic nucleus, but not in the mediodorsal nucleus of the thalamus. Confirming these anatomical observations, electrical stimulation of the core of the nucleus accumbens induced an inhibition of the spontaneous activity (D=34.9+/-13.3 ms, L=9.2+/-3.3 ms) in 46.5% of the ventral pallidal cells. Among these responding cells, 43% were antidromically driven from the subthalamic nucleus, 30% from the substantia nigra pars reticulata and only 6% from the mediodorsal nucleus of the thalamus. These data demonstrate that the region of the ventral pallidum involved in the prefrontal cortex-basal ganglia circuit originating from the prelimbic and medial orbital areas represents essentially a ventral subcommissural extension of the external segment of the globus pallidus since it exhibits similar extrinsic connections and functional characteristics. In conclusion, in this prelimbic and medial orbital channel, the ventral pallidum cannot be considered as a major output structure but is essentially involved in intrinsic basal ganglia circuits.  相似文献   

10.
Projection neurons in the striatum give rise to two output systems, the "direct" and "indirect" pathways, which antagonistically regulate basal ganglia output. While all striatal projection neurons utilize GABA as their principal neurotransmitter, they express different opioid peptide co-transmitters and also different dopamine receptor subtypes. Neurons of the direct pathway express the peptide dynorphin and the D1 dopamine receptor, whereas indirect pathway neurons express the peptide enkephalin and the D2 receptor. In the present review, we summarize our findings on the function of dynorphin and enkephalin in these striatal output pathways. In these studies, we used D1- or D2-receptor-mediated induction of immediate-early genes as a cellular response in direct or indirect projection neurons, respectively, to investigate the role of these opioid peptides. Our results suggest that the specific function of dynorphin and enkephalin is to dampen excessive activation of these neurons by dopamine and other neurotransmitters. Levels of these opioid peptides are elevated by repeated, excessive activation of these pathways, which appears to be an adaptive or compensatory response. Behavioral consequences of increased opioid peptide function in striatal output pathways may include behavioral sensitization (dynorphin) and recovery of motor function (enkephalin).  相似文献   

11.
The current view of basal ganglia organization holds that functionally corresponding subregions of the frontal cortex, basal ganglia and thalamus form several parallel segregated basal ganglia-thalamocortical circuits. In addition, this view states that striatal output reaches the basal ganglia output nuclei (the substantia nigra pars reticulata (SNR) and the internal segment of the globus pallidus (GPi)) via a 'direct' pathway, and via an 'indirect pathway' which traverses the external segment of the globus pallidus (GPe) and the subthalamic nucleus (STN). However, the topographical relationships of GPe and STN, and their topographical relationships with the basal ganglia-thalamocortical circuits are still unclear. The present work reviewed primate data on the topographical organization of STN afferents from GPe, and STN efferents to the pallidum, striatum and SNR, and examined these data with respect to a tripartite (motor, associative and limbic) functional subdivision of the striatum and pallidum. This examination indicated the following. (1) On the basis of its efferent connections, the STN may be divided into a motor and an associative territories, as well as a smaller limbic territory, each projecting to corresponding areas in the pallidum and striatum. (2) Efferents from GPe are in a position to contact subthalamic cells projecting to GPi/SNR, thus providing anatomical support for the existence of indirect pathways. (3) Moreover, given the tripartite division of the striatum, pallidum, and STN, the available data indicate the existence of indirect pathways connecting functionally corresponding subregions of the striatum, pallidum, and STN, as well as indirect pathways connecting functionally non-corresponding subregions. On the basis of the above we suggested that there may be two types of indirect pathways, one which terminates in the same subregion in GPi/SNR as the direct pathway arising from the same striatal subregion, and another which terminates in a different GPi/SNR subregion than the direct pathway arising from the same striatal subregion. We termed the former a 'closed indirect pathway' and the latter an 'open indirect pathway'. The application of these concepts to the surveyed data suggested the existence of three closed indirect pathways, each connecting the corresponding functional (motor, associative, and limbic) regions of the striatum, pallidum, STN, and SNR, as well as of two open indirect pathways, one connecting the associative striatum to the motor subregions of the basal ganglia, and the other connecting the associative striatum to the limbic subregions of the basal ganglia. While the organization of the closed indirect pathways fits the closed segregated arrangement of basal ganglia-thalamocortical circuitry, the organization of the open indirect pathways fits the recently suggested open interconnected scheme of basal ganglia thalamocortical circuitry. The clinical implications of this scheme for Huntington's disease are discussed.  相似文献   

12.
Cannabinoid receptors (CNRs) in basal ganglia are located on striatal efferent neurons which are gamma-aminobutiric acid (GABA)-containing neurons. Recently, we have demonstrated that CN-induced motor inhibition is reversed by GABA-B, but not GABA-A, receptor antagonists, presumably indicating that the activation of CNRs in striatal outflow nuclei, mainly in the substantia nigra, should be followed by an increase of GABA concentrations into the synaptic cleft of GABA-B receptor synapses. The present study was designed to examine whether this was originated by increasing GABA synthesis and/or release or by decreasing GABA uptake. We analyzed: (i) GABA synthesis, by measuring the activity of glutamic acid decarboxylase (GAD) and GABA contents in brain regions that contain striatonigral GABAergic neurons, after in vivo administration of CNs and/or the CNR antagonist SR141716; (ii) [3H]GABA release in vitro in the presence or the absence of a synthetic CN agonist, HU-210, by using perifusion of small fragments of substantia nigra; and (iii) [3H]GABA uptake in vitro in the presence or the absence of WIN-55,212-2, by using synaptosomes obtained from either globus pallidus or substantia nigra. Results were as follows. Delta9-tetrahydrocannabinol (delta9-THC) and HU-210, did not alter neither GAD activity nor GABA contents in both the striatum and the ventral midbrain at any of the two times tested, thus suggesting that CNs apparently failed to change GABA synthesis in striatonigral GABAergic neurons. A similar lack of effect of HU-210 on in vitro [3H]GABA release, both basal and K+-evoked, was seen when this CN was added to perifused substantia nigra fragments, also suggesting no changes at the level of GABA release. However, when synaptosome preparations obtained from the substantia nigra were incubated in the presence of WIN-55,212-2, a decrease in [3H]GABA uptake could be measured. This lowering effect was specific of striatonigral GABAergic neurons since it was not observed in synaptosome preparations obtained from the globus pallidus. In summary, the activation of CNRs located on striatonigral GABAergic neurons, which primarily access to GABA-B receptor synapses, was accompanied by a reduction in neurotransmitter uptake, thus prolonging the presence of GABA into the synaptic cleft. This mechanism might underly the CN-induced motor inhibition through the potentiation of the inhibitory effect of GABA on neuronal activity, in particular of nigrostriatal dopaminergic neurons.  相似文献   

13.
The haloperidol-induced increase of Fos-like immunoreactive (Fos-li) neurons in the basal ganglia was compared in the C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains. The D2 strain is 10-fold more sensitive than the B6 strain to haloperidol-induced catalepsy, a putative animal model of the extrapyramidal symptoms (EPS) seen after the administration of typical neuroleptics. In contrast, the strains are equally sensitive to the haloperidol facilitation of prepulse inhibition of the acoustic startle response, a measure of drug efficacy on the mesolimbic dopamine system. The haloperidol effects on Fos-li neurons were examined over the range of 0.1 to 6.0 mg/kg; the ED50s for haloperidol-induced catalepsy are 0.4 and 3.8 mg/kg in the D2 and B6 strains, respectively. In neither the core or shell of the nucleus accumbens nor the caudate-putamen (including the dorsolateral aspect) did the D2 strain show a greater Fos response compared to the B6 strain. In fact, in the dorsolateral caudate-putamen, the B6 strain showed a modest but significantly greater Fos response. However, at the output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra zona reticulata (SNr), the D2 strain consistently showed a greater Fos response. These data suggest that the EP and SNr may be important to understanding the difference in haloperidol-induced catalepsy between the D2 and B6 strains.  相似文献   

14.
We used retrograde transneuronal transport of herpes simplex virus type 1 to map the origin of cerebellar and basal ganglia "projections" to leg, arm, and face areas of the primary motor cortex (M1). Four to five days after virus injections into M1, we observed many densely labeled neurons in localized regions of the output nuclei of the cerebellum and basal ganglia. The largest numbers of these neurons were found in portions of the dentate nucleus and the internal segment of the globus pallidus (GPi). Smaller numbers of labeled neurons were found in portions of the interpositus nucleus and the substantia nigra pars reticulata. The distribution of neuronal labeling varied with the cortical injection site. For example, within the dentate, neurons labeled from leg M1 were located rostrally, those from face M1 caudally, and those from arm M1 at intermediate levels. In each instance, labeled neurons were confined to approximately the dorsal third of the nucleus. Within GPi, neurons labeled from leg M1 were located in dorsal and medial regions, those from face M1 in ventral and lateral regions, and those from arm M1 in intermediate regions. These results demonstrate that M1 is the target of somatotopically organized outputs from both the cerebellum and basal ganglia. Surprisingly, the projections to M1 originate from only 30% of the volume of the dentate and <15% of GPi. Thus, the majority of the outputs from the cerebellum and basal ganglia are directed to cortical areas other than M1.  相似文献   

15.
Striatal lesions are known to cause the anterograde transneuronal degeneration of the substantia nigra pars reticulata (SNr) neurons in consequence to loss of GABAergic inhibitory striatonigral efferents. The present study was undertaken to examine whether long-term intraventricular administration of the GABA agonist muscimol could promote reformation of the striatonigral pathway arising from transplants by rescuing host SNr neurons from transneuronal death in rats with striatal ischemic lesions. Compared to nongrafted rats with striatal lesions, (i) a prominent axonal projection from the transplants to the ipsilateral substantia nigra, (ii) a significant increase in number of survived neurons in the ipsilateral SNr, and (iii) a significant reduction in number of apomorphine-induced turning behaviors were found in grafted animals with muscimol infusion, but not in those without muscimol administration. These findings suggest that preservation of the host target neurons for grafted cells may increase an efficacy of cerebral implants in establishment of the host-graft fiber connections, possibly, leading to functional restoration.  相似文献   

16.
Using a specific antiserum recently raised against [D-Ala2]deltorphin I (DADTI: Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2), a highly selective ligand for delta-opioid receptors, we have previously demonstrated the occurrence of positive immunostaining in several structures of mouse brain. We describe here the neuroanatomical distribution patterns of DADTI-immunoreactive neuronal bodies, axons, and tanycytes in rat brain. Positive neuronal somata were localized mainly in the ventral mesencephalon, including the ventral tegmental area and the pars compacta of the substantia nigra. A minor population of positive somata was found in the pars reticulata and pars lateralis of the substantia nigra, raphe nuclei, supramammillary nucleus, and retrorubral reticular nucleus. All these regions, except for the supramammillary nucleus, contain dopamine cell bodies. Intensely stained positive nerve fibers could be traced along the medial forebrain bundle. Dense positive terminals were seen in the neostriatum, nucleus accumbens shell, olfactory tubercle, septal areas, cingulate, and medial prefrontal cortex. Double-immunostaining study revealed that, in the substantia nigra, almost all (97.8%) DADTI-positive neurons colocalized with tyrosine hydroxylase (TH), and the doubly stained cells occupied about one-third (29.1%) of the total population of TH-positive neurons. Only a few DADTI/TH-positive cells also stained for 28-kDa calbindin D, although many neurons double-stained for 28-kDa calbindin D and TH. In contrast, the supramammillary nucleus contained a number of DADTI-positive cells, which nearly always stained positively for 28-kDa calbindin D but did not stain for TH. The association of DADTI-like immunoreactivity with certain dopaminergic pathways seems of particular interest. A small population of DADTI-immunostained tanycytes was present in the ventral part of the third ventricle wall.  相似文献   

17.
Neuroanatomical and pharmacological experiments support the existence of a homologue of the mammalian substantia nigra-basal ganglia circuit in the amphibian brain. Demarcation of borders between the striatum and pallidum in frogs, however, has been contentious, and direct evidence of functional coupling between the putative nigral and striatal homologues is lacking. To clarify basal ganglia function in anurans, the authors used expression of immediate-early gene egr-1 as a marker of neural activation in the basal ganglia of túngara frogs (Physalaemus pustulosus). Regional variation in egr-1 mRNA levels distinguished striatal and pallidal portions of the basal ganglia and supported the grouping of the striatopallidal transition zone with the dorsal pallidum. As further evidence for a functional coupling between the dopaminergic cells in the posterior tuberculum (the putative substantia nigra homologue) and the basal ganglia, a positive relationship was demonstrated between the size of the dopaminergic cell population and the neural activation levels within the dorsal pallidum. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
Two experiments supported the hypothesis that muscimol (MC) spared substantia nigra pars reticulata (SNR) neurons by replacing gamma-aminobutyric acid (GABA) at the postsynaptic receptor. Exp 1 investigated behavioral impairments in 12 male rats who were given intraventricular infusions of MC or saline following unilateral axon-sparing damage to striatal cells. Exp 2 examined whether the detrimental effect on recovery caused by MC in Exp 1 was related to a protective effect on neurons in the SNR or to an effect of enhanced GABAergic activity in 16 rats assigned to diazepam (a GABA agonist) or vehicle groups. Behavioral impairments were assessed with tests of behaviors that included circling and forelimb adduction. (French abstract) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
20.
Susceptibility to develop Parkinson's disease has been linked to abnormalities of P450 enzyme function. Multiple P450 enzymes are expressed in brain but the relationship of these to Parkinson's disease is unknown. We have investigated the expression of P450 enzymes in the rat substantia nigra and their co-localization in tyrosine hydroxylase-positive neurons and astrocytes. Immunohistochemistry was performed using anti-peptide antisera against the following P450 enzymes: CYP1A1, CYP1A2, CYP2B1/2, CYP2C12, CYP2C13/2C6, CYP2D1, CYP2D4, CYP2E1, CYP3A1, CYP3A2 and NADPH-P450 oxidoreductase. Immunoreactivity in nigral cells was found only for CYP2E1 and CYP2C13/2C6. CYP2E1 immunoreactivity was localized to many midbrain nuclei including the substantia nigra pars compacta but not the substantia nigra pars reticulata while immunoreactivity to CYP2C13/2C6 was found in the substantia nigra pars compacta, substantia nigra pars reticulata and many other midbrain nuclei. Sections of rat midbrain double labelled for either CYP2E1 or CYP2C13/2C6 and tyrosine hydroxylase or glial fibrillary acidic protein were examined for co-localization by confocal laser scanning microscopy. CYP2E1 and CYP2C13/2C6 immunoreactivity was found in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta but not in glial cells. CYP2C13/2C6, but not CYP2E1, was also found in non-glial, non-tyrosine hydroxylase-expressing cells in the substantia nigra pars reticulata. Isoniazid induction increased CYP2E1 fluorescence signal intensity from nigral dopaminergic neurons. At least two P450 enzymes are found in nigral dopamine containing cells and one, namely CYP2E1, is selectively localized to this cell population. CYP2E1 is a potent generator of free radicals which may contribute to nigral pathology in Parkinson's disease. The expression of CYP2E1 in dopaminergic neurons in substantia nigra raises the possibility of a causal association with Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号