首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hardening kinetics of a lime based mortar is based on the uptake of carbon dioxide from the ambient air. The presence of watervapour is required in order to enable the reaction between the CO2 and the lime (calcium hydroxide). Via this reaction the hardening of air lime is net uptaker of CO2. An extensive literature study was made on the fundamentals of the carbonation process in mortars with different compositions. The results of the study indicate that carbonation ranges from 80 % up to 90 %. It is clear that the mechanism and the kinetics of the carbonation depend strongly on the mineralogy, texture of mortars, type of additive used, the lime use for the mortar, the width of the walls, thickness of the mortar (less carbonation when mortar depth increases) as well as the timeframe allowing for the carbonation process to take place. Under natural conditions, actual building practice and depending on the thickness of the mortar/plaster, carbonation takes between a few weeks and several years. The results of this study were used for the environmental footprint study in order to calculate the capture of CO2 that occurs progressively during the hardening of a building materials containing lime.  相似文献   

2.
Addition of fly ash has beneficial effects on some mechanical properties of concrete, as well as on the corrosion process induced by the chloride ion. The aim of this study was to investigate the effect of fly ash addition on the corrosion process occurring in reinforced concrete exposed simultaneously to carbon dioxide and chloride. The corrosion process of steel rebars embedded in mortar with 15% and 30% of fly ash was tested under carbon dioxide and sodium chloride contamination. Monitoring of open circuit potential and electrochemical impedance spectroscopy (EIS) were used to follow the corrosion process. Results have shown that under accelerated carbonation fly ash mortar shows higher corrosion rates. The chloride content in mortar exposed to accelerated carbonation increases with the amount of fly ash. However, under natural carbonation it decreases with the addition of fly ash.  相似文献   

3.
Reinforced concrete is widely used in the construction of buildings, historical monuments and also nuclear power plants. For various reasons, many concrete structures are subject to unavoidable cracks that accelerate the diffusion of atmospheric carbon dioxide to the steel/concrete interface. Carbonation at the interface induces steel corrosion that may cause the development of new cracks in the structure, and this is a determining factor for its durability. It is therefore important to accurately characterize the length of the load-induced damage along the steel/concrete interface in order to understand the effect of cracking on corrosion initiation and propagation. The aim of this paper is to present an experimental procedure that allows the load-induced damage length to be assessed. The procedure consists in subjecting specimens to accelerated carbonation and determining the length of the carbonated steel/mortar interface, which is assumed to be equal to the length of the damaged steel/mortar interface. Suitable conditions should therefore be found for the accelerated carbonation in order to obtain an accurate characterization of the damaged steel/mortar interface length. To this end, two carbonation concentrations (3, 50%) and several carbonation durations were tested. The results indicate that a strong carbonation shrinkage phenomenon develops at high carbon dioxide concentration and leads to new cracking along the steel/mortar interface. These cracks allow the carbon dioxide to spread along the interface over a length greater than the damaged length. This is not the case when the accelerated carbonation test is performed at lower carbon dioxide concentration. Consequently, accelerated carbonation at high carbon dioxide concentration (50%) cannot be used neither for the estimation of the length of the mechanically damaged steel/mortar interface nor for the carbonation-induced corrosion studies because it will lead to an overestimation of the size of the corroded area.  相似文献   

4.
In cementitious binders when used for masonry mortars the requirements for properties of importance during early and later ages are different. Whereas during the early periods the attributes required are water retention, workability, plasticity, adhesion, etc. to allow the mortar to possess good working properties such as the ease of spreading, proper filling of joints and also to provide a water resistant crack free smooth surface, but at later ages strength becomes the main criterion to sustain the imposed load of the structure. Portland cement based mortars though harden rapidly and attain high strength but possesses a relatively poor early age properties. In composite mortars there is a common practice to incorporate lime along with portland cement, whose presence improves upon the early age rehological properties. Once the setting and hardening take place and the role of these early age properties is completed, lime has little role to play, as it harden through the lethargic process of carbonation i.e. by the chemical action of lime with atmospheric carbon dioxide forming insoluble carbonate. The process of carbonation is very slow and takes place from surface inwards. Modified composite mortars have been developed by the replacement of certain part of lime with pozzolana such as burnt clay or flyash and has been found to be of advantage. Laboratory investigations on a series of such mixtures have revealed the possession of good early age properties and at the same time better strength at later ages. Some of the results are reported in this paper.  相似文献   

5.
A comparative environmental assessment study focusing on the stages of mortar production and carbonation through hardening has been conducted by the European Lime Association in collaboration with mortar producers from various EU countries on 17 formulations of mortars, renders and plasters. The results of the “cradle‐to‐gate” for mortar and renders indicated that: There are no significant differences between products with low and high lime contents and depending on the lime content in the products, the contribution of the hydrated lime to the different environmental indicators can range between 0 % and about 20 %. However, there are clear differences in the environmental footprints of gypsum or lime based plasters. Based on the plaster composition investigated in this study, it appears that lime based plasters have the lowest environmental footprint for some of the impacts (primary energy consumption, abiotic depletion and water eutrophication), whereas for the remaining indicators the gypsum based plasters have the lowest environmental footprint. Depending on the lime content in the plasters, the contribution of the hydrated lime to the different environmental indicators can vary in a wide range, i. e. between 0 and 40 %. The differences in the environmental impacts of mortars, renders and plasters produced in integrated or non‐integrated mortar plants are generally rather small The lime carbonation process lowers the overall carbon footprint during the first period of the use phase of the mortars in buildings. This impact shall be taken into account in holistic LCA studies. If not, this leads to a wrong interpretation of the environmental impact of the mortars.  相似文献   

6.
The paper describes the physicochemical processes of concrete carbonation and presents a simple mathematical model for the evolution of carbonation in time, applicable under constant relative humidity higher than 50%. The model is based on fundamental principles of chemical reaction engineering, and uses as parameters the ambient concentration of CO2, the molar concentratrations of the carbonatable constituents, Ca(OH)2 and CSH, in the concrete volume, and the effective diffusivity of CO2 in carbonated concrete. The latter is given by an empirical function of the porosity of hardened cement paste and of relative humidity, derived from laboratory diffusion tests. The validity of the model for OPC or pozzolanic cement concretes and mortars is demonstrated by comparison of its predictions with accelerated carbonation test results obtained in an environment of controlled CO2 concentration, humidity and temperature. The mathematical model is extended to cover the case of carbonation of the coating-concrete system, for concrete coated with a cement-lime mortar finish, applied either almost immediately after the end of concrete curing or with a delay of a certain time. Parametric studies are performed to show how the evolution of carbonation depth with time is affected by cement and concrete composition (water/cement or aggregate/cement ratio, percentage OPC or aggregate replacement by a pozzolan), environmental factors (relative humidity, ambient concentration of CO2), the presence and the time of application of a lime-cement mortar coating and its composition (water/cement, aggregate/cement and lime/cement ratios of the mortar, percentage OPC or aggregate replacement by a pozzolan).  相似文献   

7.
The paper addresses the effect of crack opening on the ability of carbon dioxide to diffuse along a crack. The experimental tests were carried out on mortar samples. A mechanical expansive core was used to generate cracks of constant width across the thickness of the sample. Cracked specimens with crack openings ranging from 9 to 400 μm were exposed to accelerated carbonation for 65 days. Then they were removed to determine the depth of carbonation perpendicular to the crack path. Theses depths were compared to the measured ones on the reference samples. The results show that crack opening significantly influences the ability of carbon dioxide to diffuse along the crack. Indeed, the carbonation depth perpendicular to the crack wall indicates a lower capacity to diffuse in cracks less than 41 μm in width. For crack openings ranging from 9 to 41 μm, there was still diffusion along the crack path. Moreover, carbonation of the interface between steel and mortar was observed inducing a depassivation of the reinforcement. For the duration of the experiments, there was no diffusion in crack openings of less than 9 μm. The effect of interlocking phenomena between the fracture surfaces on the ability of carbon dioxide to diffuse along the crack, was also studied. The results showed that interlocking phenomena in cracks is the main factor limiting the diffusion of carbon dioxide in fine cracks.  相似文献   

8.
In this work nano-titania of anatase and routile form has been added in mortars containing: (a) binders of either hydrated lime and metakaolin, or natural hydraulic lime and, (b) fine aggregates of carbonate nature. Mortar composition was tailored to ensure adhesion of fragments of porous limestones from the Acropolis monuments. The aim was to study the effect of nano-titania in the hydration and carbonation of the above binders, as well as the mechanical properties and the adhesive capability of the designed mortars, where the nano-titania proportion was 4.5–6% w/w of binder. The physico-chemical and mechanical properties of the nano-titania mortars were studied and compared to the respective ones, without the nano-titania addition. DTA-TG, FTIR, SEM and XRD analyses indicated the evolution of carbonation, hydration and hydraulic compound formation during a 1 year curing. Results indicate enhanced carbonation, hydration and modulus of elasticity of mortar mixtures with nano-titania. A specifically designed experimental procedure for measuring the direct tensile strength of the mortar–stone system proved that nano-titania mortars can be used as adhesive materials for porous limestones.  相似文献   

9.
An extensive experimental program has been set up to characterize the time-dependent deformation behavior of masonry, subjected to the creep failure mode. Different types of short-term creep tests were performed on small masonry specimens, which were constructed with air-hardening lime mortar. To assess the influence of the carbonation process on creep behavior, several specimens were subjected to accelerated carbonation. The time-dependent deformations are modeled using a viscoelastic, rheological model which includes damage effects. The applicability of the model is validated by comparing theoretical and experimental results and extending the time frame to long-term predictions. Good agreement was found between experimental and simulated time-dependent deformations. The accuracy of the proposed model is estimated by including the scatter on the most important material parameters in the analysis.  相似文献   

10.
选用ZnSO4和MgSO4两种电沉积溶液,对带裂缝的砂浆试件进行修复,测定了7天、14天、21天、28天、35天龄期带裂缝砂浆试件无裂缝处及裂缝处的碳化深度,研究了带裂缝的砂浆试件经过电沉积处理后碳化深度的变化情况.结果表明:利用ZnSO4和MgSO4两种电沉积溶液,对带裂缝的砂浆试件进行电沉积处理后,其抗碳化能力均有所提高,而且采用MgSO4溶液,抗碳化能力的提高程度要高于采用ZnSO4溶液的.  相似文献   

11.
The purpose of the present study is to determine the effect of factors such as dosage, curing conditions and use of a superplasticiser admixture on the porosity, mechanical strength and composition of slaked lime (SL)–metakaolin (MK) mortars. Statistical correlations have been established to describe the mechanical properties as well as porosity and composition of the slaked lime–metakaolin mortars.The SL/MK ratio has a moderate effect on mortar flexural and compressive strengths. The SL + MK/sand ratio is the factor with the highest impact on all the properties studied: strength, porosity and mortar composition. As this ratio increases, strength, porosity and amount of hydration and carbonation products formed in the samples also rise. The next factor by order of importance is the presence of a superplasticiser admixture, which affects porosity, strength and the amount of calcite in the sample. The presence of this superplasticiser admixture increases strength, raises the percentage of calcite in the mortars and reduces porosity. It is particularly striking that neither curing nor open air carbonation time (in the range studied) has a significant effect on the composition or porosity of the SL–MK mortars studied, although they do have a moderate effect on mechanical strength.  相似文献   

12.
Direct mineral carbonation produces a material rich in carbonates and with reduced quantities of free oxides. The aim of this work was to show that such materials can be used in the construction domain. Basic Oxygen Furnace (BOF) slag from the steelmaking process has been traditionally seen as unfit for bounded applications due to its propensity to swelling, resulting from hydration of its high free lime content. Here, BOF slag was crushed to suitable particle sizes, carbonated in an aqueous solution of carbonic acid, and utilized to replace 50% of natural sand aggregate in cement mortars. The mechanical and chemical properties of these mortars were compared to mortars containing non-carbonated slags, and a standard cement mortar as a reference. Tests were conducted to determine mortar paste consistency and soundness, and cured mortar compressive strength and leaching tendencies. The results showed a satisfactory performance for all considered aspects (comparable with the reference) of the mortar sample containing 37.5 wt% (1.5 in 4 parts solids) carbonated BOF slag of <0.5 mm particle size.  相似文献   

13.
Biochar is widely considered as effective way of sequestering carbon dioxide. The possibility of using it to enhance the mechanical strength and reduce permeability of cement mortar is explored in this study. The effect of fresh biochar and biochar saturated with carbon dioxide a priori on the setting time, mechanical strength and permeability of cement mortar was evaluated. The biochar was prepared from mixed wood saw dust at 300 °C and added to mortar during mixing at 2% by weight of cement. It was found that addition of fresh biochar and saturated biochar reduce initial setting time and significantly improve early compressive strength of mortar. The experimental results suggested that biochar addition can impart ductility to mortar under flexure, although flexural strength was not significantly influenced. Water penetration and sorptivity of mortar was significantly reduced due to addition of biochar, which indicate higher impermeability in biochar added mortar. However, it is found that addition of fresh biochar offers significantly higher mechanical strength and improved permeability compared to biochar saturated with carbon dioxide. These results suggest that biochar has the potential to be successfully deployed as a carbon sequestering admixture in concrete constructions that also provides a way to waste recycling.  相似文献   

14.
The purpose of this work was to investigate the corrosion resistance of lightweight mortar exposed to corrosive environments. Widespread use of lightweight mortar is attributed to the several advantages it presents; nevertheless its durability is questionable, as far as the corrosion of reinforcing bars is considered, due to its high porosity. Lightweight mortar specimens were produced using two types of Greek cements as well as Greek pumice of volcanic origin; three different organic coatings and a varnish were applied on them. Specimens were either partially immersed in 3.5% NaCl solution or exposed outdoors. The anti-corrosive performance of these systems was investigated monitoring corrosion potentials and mass loss as well as carbonation and chloride diffusion. The results revealed that in all cases the use of protective coatings reduced significantly corrosion of rebars. Among the examined systems the best protection is offered by the aqueous acrylic dispersion containing titanium dioxide.  相似文献   

15.
The durability performance of cementitious material is traditionally based on assessing the effect of a single degradation process. However, this study investigates the coupled deterioration properties of mortar incorporating industrial solid waste—ground granulated blast furnace slag (BFS) and different mineral admixtures, such as calcium sulfate (CS) and limestone powder (LSP). The combined deterioration properties caused by carbonation and frost damage in the mortar sample were experimentally investigated with respect to accelerated carbonation and freeze–thaw tests. Different degrees of deterioration, i.e. after subjected to 12, 30 and 60 freeze–thaw cycles, were induced in the freeze–thaw tests. The experimental investigation of single degradation revealed that the compressive strength, frost resistance and carbonation resistance decrease as the BFS replacement ratio increases by weight from 0 to 45%. The less amount of CH in the BFS cement leads to the carbonation progress more easily. Moreover, to achieve the same strength as ordinary Portland cement, 2 wt% CS and 4 wt% LSP in the BFS mortar are required. However, the data shows that incorporating LSP into the BFS mortar produces a lower frost resistance. The combined damage tests revealed that different deterioration degrees resulting from 12, 30 and 60 freeze–thaw cycles slightly decreased the carbonation resistance, which is related to the decrease in the inkbottle pore volume due to its water retention characteristics. Simultaneously, the pre-carbonation deterioration could effectively decrease the surface mass scaling of the freeze–thaw and the pore structure undergoes densification due to pre-carbonation.  相似文献   

16.
When cement with mineral additions is employed, the carbonation resistance of mortar and concrete may be decreased. In this study, mortars containing mineral additions are exposed both to accelerated carbonation (1% and 4% CO2) and to natural carbonation. Additionally, concrete mixtures produced with different cements, water-to-cement ratios and paste volumes are exposed to natural carbonation. The comparison of the carbonation coefficients determined in the different exposure conditions indicates that mortar and concrete containing slag and microsilica underperform in the accelerated carbonation test compared to field conditions. The carbonation resistance in mortar and concrete is mainly governed by the CO2 buffer capacity per volume of cement paste. It can be expressed by the ratio between water added during production and the amount of reactive CaO present in the binder (w/CaOreactive) resulting in a novel parameter to assess carbonation resistance of mortar and concrete containing mineral additions.  相似文献   

17.
The modeled recycled aggregate concrete (MRAC) which is an idealized model for the real recycled aggregate concrete (RAC) was used in this study. The MRCAs prepared with two types of old mortars were modified by an accelerated carbonation process. The effects of carbonation of MRCA on the micro-hardness of MRCA and the mechanical properties of MRAC were investigated. The results indicated that the micro-hardness of the old interfacial transition zone (ITZ) and the old mortar in the carbonated MRCAs was higher than that in the uncarbonated MRCAs, and the enhancement of the old ITZ was more significant than that of the old mortar. The compressive strength and modulus of MRACs increased when the carbonated MRCAs were utilized, and the improvement was more significant for MRAC prepared with a higher w/c. In addition, a numerical study was carried out and it showed that the improvement in strength by carbonation treatment was less obvious when the difference between the new and old mortar was larger.  相似文献   

18.
通过四次烘干和三次吸湿试验,考察了湿度变化对多壁碳纳米管复合水泥砂浆(MWCNTs/CM)的电阻和压阻效应的影响,并与素水泥砂浆(CM)进行对比。结果表明:在试件湿度较大时,烘干和吸湿对MWCNTs/CM和CM电阻的影响较小,而当试件湿度较低时(第三次烘干及第一次吸湿后,湿度变化比低于1%时),电阻随着湿度的降低突然增加,并且湿度变化对CM电阻的影响程度显著高于MWCNTs/CM。同样,当试件湿度较大时,烘干和吸湿对MWCNTs/CM和CM压阻效应的影响较小,当试件湿度较低时(在第三次烘干后),CM和MWCNTs/CM的压阻效应显著增强,并且湿度变化对CM压阻效应的影响显著高于MWCNTs/CM。研究还表明,在湿度变化量大致相同时,吸湿过程中CM和MWCNTs/CM达到渗流阈值附近时压阻效应高于烘干过程。最后,初步探讨了MWCNTs/CM压阻效应随湿度变化的作用机理,给出了MWCNTs/CM压阻效应随湿度变化的等效电路模型。  相似文献   

19.
Biochar is widely recognized as an effective material for sequestration of carbon dioxide. The possibility of using it as a coating material on polypropylene fibers to improve mechanical properties and permeability mortar is explored in this study. Effectiveness of two types of biochar – fresh biochar and biochar saturated with carbon dioxide prior to application as coating – on compressive and flexural strength, post-cracking behavior and permeability of mortar is studied. The biochar used was derived from mixed wood saw dust by pyrolysis at 300 °C. Experimental results show that application of fresh biochar coating offer significant improvement in compressive strength and flexural strength of mortar. Residual strength and post-cracking ductility of mortar with biochar coated fibers is found to be higher than control samples, although fresh biochar coating offers the best performance. Mortar with polypropylene fibers coated with fresh biochar shows higher impermeability, compared to reference samples and mortar with saturated biochar coated fibers. The findings suggest that biochar coating could be a potential solution to improve properties of fiber reinforced cementitious composites that also promotes waste recycling and carbon sequestration.  相似文献   

20.
Corrosion of reinforced concrete structures is a major problem throughout the world, demanding significant amounts for repair and rehabilitation. Corrosion protection is commonly performed by coating the concrete or by using corrosion inhibitors. This paper describes the comparative evaluation of the effectiveness of an acrylic dispersion and an inorganic coating on silicate basis, of an alkanolamine-based corrosion inhibitor and of their combination, on reinforced mortar specimens partially immersed in 3.5% NaCl solution. The following techniques were used: strain gauges, measurements of the corrosion potential, the mass loss and the EIS of the reinforcing bars and measurements of the chloride diffusion and the carbonation depth in mortars. Results demonstrate that the simultaneous use of the alkanolamine-based corrosion inhibitor with the inorganic coating offers a protection degree comparable to that of the acrylic dispersion, which performs best in the presence of both chloride ions and carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号