首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了一种基于聚硫堇/纳米金复合材料修饰电极对NO2-的电催化氧化。相对于裸玻碳电极,聚硫堇-纳米金协同催化效应使NO2-的氧化电流增强,过电位降低。详细讨论了聚合膜的厚度、纳米金吸附时间、pH缓冲介质、pH值以及干扰离子对NO2-氧化电流的影响。在最优实验条件下,测得NO2-的线性范围为3.0×10^-6~1.0×10^-3 mol/L,检测限为1.0×10^-6 mol/L。该修饰电极具有灵敏度高、稳定性和重现性好、抗干扰能力强的特点,可用于实际样品中NO2-含量的测定,结果满意。  相似文献   

2.
采用电沉积技术在过氧化聚吡咯膜上制备纳米金,通过扫描电镜和X-射线光电子能谱对复合材料的形貌和结构进行表征。采用循环伏安和计时安培法研究烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide,NADH)在纳米金/过氧化聚吡咯复合材料修饰玻碳电极上的电化学催化氧化反应。结果表明,复合材料修饰电极显著降低了NADH的氧化峰电位,峰电流与其浓度在2.0×10~(-7)~1.2×10~(-3)mol/L范围内呈现很好的线性关系,检测限为5.0×10~(-8)mol/L,该修饰电极可用于对NADH的线性检测。  相似文献   

3.
在含牛磺酸的磷酸盐缓冲溶液中,用循环伏安法在玻碳电极上制备聚牛磺酸薄膜.采用循环伏安法研究多巴胺(DA)和抗坏血酸(AA)在聚牛磺酸膜修饰电极上的电化学行为.实验结果表明聚牛磺酸膜修饰电极对DA的氧化具有良好的电催化作用和选择性,DA与AA氧化峰电位差达220 mV,对DA的电流响应灵敏度高出AA近十倍.在5×10-6~ 1×10-4 mol/L范围内,DA的浓度与峰电流呈良好的线性关系,相关系数为0.998 3,检测限为1.0×10-6 mol/L.该修饰电极能在AA共存时选择测定DA.  相似文献   

4.
采用电化学方法制备聚亚甲基蓝(PMB)修饰阳极氧化铝(Anodic alumina oxide,AAO)纳米电极(PMB/AAO),并研究该电极的电化学性质和对抗坏血酸(AA)的催化氧化.结果表明:PMB/AAO纳米电极对AA有明显的催化氧化作用,其催化活性强于PMB/Au电极的催化作用.同时,应用线性扫描伏安法(Linear Sweep Voltammetry,LSV)对AA进行定量分析,其氧化峰电流与AA的浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为1.0×10-6 mol/L.该电极重现性良好,并将PMB/AAO用于维生素C片剂中AA的测定,结果令人满意.  相似文献   

5.
采取自组装的方法制备3 巯基丙酸(3 mercaptoacetic propionic acid,MPA)自组装膜修饰金电极,进而采用循环伏安、交流阻抗等电化学方法对该电极进行表征,计算电极有效表面积为1.97×10-2 cm2.研究了尿酸(uric acid,UA)在该修饰电极上的电化学行为,结果表明,MPA/SAM/Au电极具有良好的稳定性和电化学活性,在pH=6.0的磷酸氢二钠 柠檬酸(Na2HPO4 C6H8O7)缓冲溶液中,相比裸金电极,MPA/SAM/Au电极对UA响应的峰电流较大.其氧化峰电流与尿酸的浓度在1.6×10-4~1×10-6 mol/L浓度范围内呈良好的线性关系,线性回归方程为ip/(μA)=0.738 9+0.040 46 c0/(μmol/L),相关系数R=0.998 6,检测限为5×10-7 mol/L.  相似文献   

6.
采用电沉积技术在过氧化聚吡咯膜上制备纳米金, 通过扫描电镜和X-射线光电子能谱对复合材料的形貌和结构进行表征。采用循环伏安和计时安培法研究烟酰胺腺嘌呤二核苷(Nicotinamide Adenine Dinucleotide,NADH) 在纳米金/过氧化聚吡咯复合材料修饰玻碳电极上的电化学催化氧化反应。结果表明, 复合材料修饰电极显著降低了NADH 的氧化峰电位, 峰电流与其浓度在2.0×10-7~1.2×10-3 mol/L范围内呈现很好的线性关系, 检测限为5.0×10-8 mol/L, 该修饰电极可用于对NADH 的线性检测。  相似文献   

7.
采用电化学沉积的方法制备了金纳米粒子修饰的泡沫镍电极,基于葡萄糖在AuNPs/泡沫镍电极上的电化学氧化制备了无酶葡萄糖传感器。通过扫描电子显微镜对金纳米粒子修饰的泡沫镍电极的表面形貌进行了表征,并对氯金酸的浓度、沉积圈数、pH值等实验条件进行了优化设计。在最佳实验条件下传感器对葡萄糖的线性响应范围为2.0×10-7~1.0×10-5 mol·L-1,检出限为7.6×10-8 mol·L-1。传感器制备简单,无需特殊条件保存。  相似文献   

8.
采用涂覆法制备多壁碳纳米管(MWCNT)-离子液体([BMIM]PF6)修饰电极,研究Cu2+在该修饰电极上的阳极溶出伏安行为。考察了实验条件对Cu2+电化学行为的影响。研究表明,Cu2+在修饰电极上可得到灵敏的溶出峰。在优化的实验条件下,Cu2+在1.0×10-6~1.0×10-5mol/L浓度范围内与其氧化峰电流呈良好的线性关系,相关系数为0.998 4,检出限为9.0×10-8mol/L。该修饰电极制备简单,重现性好,用于微量铜的检测,效果良好。  相似文献   

9.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10-6~1.0×10-4 mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-7 mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

10.
制备了金纳米粒子/碳纳米管复合膜修饰的玻碳电极(GNP/CNT/GC),研究该电极上对苯二酚的电化学行为。结果表明:复合膜修饰玻碳电极综合了碳纳米管和金纳米粒子的电催化活性,提高了对苯二酚电化学反应的可逆性,增强了电化学信号,与空白玻碳电极相比,氧化电流增加6倍;对苯二酚在GNP/CNT/GC电极上的电化学反应:低浓度(5×10~(-5)mol/L)时对苯二酚的电极反应受扩散过程控制,而高浓度(5×10~(-4)mol/L)时对苯二酚的电极反应受吸附过程控制。此外还研究了碳纳米管用量,复合膜的层数,扫速等条件对电化学响应信号的影响。  相似文献   

11.
制备了酞菁铁-邻苯二甲酸二正辛酯修饰碳糊电极,发现该电极对抗坏血酸的电氧化具有催化作用.在最优化条件下,抗坏血酸的氧化峰电流与其浓度在1.0×10-6~3.4×10-4 mol/L范围内成良好的线性关系,检测限为3.2×10-7 mol/L.初步讨论了电催化机理.该电极已成功用于果汁和药品维生素C片中的抗坏血酸含量的测定.  相似文献   

12.
酞菁铁修饰碳糊电极测定抗坏血酸的研究   总被引:4,自引:0,他引:4  
制备了酞菁铁邻苯二甲酸二正辛酯修饰碳糊电极,发现该电极对抗坏血酸的电氧化具有催化作用.在最优化条件下,抗坏血酸的氧化峰电流与其浓度在1.0×10-6~3.4×10-4mol/L范围内成良好的线性关系,检测限为3.2×10-7mol/L.初步讨论了电催化机理.该电极已成功用于果汁和药品维生素C片中的抗坏血酸含量的测定.  相似文献   

13.
制备L -半胱氨酸自组装膜修饰金电极,并研究抗坏血酸在修饰电极上的电化学行为,同时建立了利用修饰电极催化作用快速测定抗坏血酸的方法.在含有抗坏血酸的0.1mol/L HAc-NaAc(pH=4.0)缓冲溶液底液中,在-0.20~0.60V(vs,SCE)电压范围内,用修饰电极作为工作电极进行循环伏安扫描,抗坏血酸分别在峰电位Epa=0.264V,Epc=0.199V(vs.SCE)处产生灵敏的催化氧化还原峰.修饰电极对抗坏血酸的催化氧化峰与抗坏血酸的浓度在4.0×10-7~7.0×10-4mol/L范围内呈良好的线性关系.用该方法测定抗坏血酸检出限可达1.0×10-7mol/L.利用该方法测定维生素C丸中的抗坏血酸含量,结果令人满意.  相似文献   

14.
利用纳米钯/石墨烯材料构建一种测定双酚A的高灵敏电化学传感器. 本实验在石墨烯基底上电沉积钯纳米颗粒,得到纳米钯/石墨烯-壳聚糖复合物修饰玻碳电极(Pd/GR-Chit/GCE),并通过扫描电子显微镜和电化学技术对其进行表征. 研究了双酚A(BPA)在Pd/GR-Chit/GCE上的电化学行为,发现其氧化峰电流在Pd/GR-Chit/GCE表面得到显著的增强,表明修饰电极对BPA表现出明显的电催化效果. 优化了钯纳米颗粒的沉积条件、石墨烯的滴涂量、pH值、富集电位和富集时间等测定参数,建立了一种快速简便测定BPA电化学新方法,实验结果显示,在pH 7的磷酸盐缓冲溶液中,BPA峰电流与其浓度在1.0×10-7 mol/L~6.0×10-5 mol/L范围内呈良好的线性关系,检测限可达到1.0×10-8 mol/L.  相似文献   

15.
羟基磷灰石纳米线具有比表面积大、吸附性强,生物相容性好的优点,利用石墨烯优异的导电性与羟基磷灰石复合制成纳米复合材料,该复合材料在电化学领域得到了越来越广泛的应用。利用水热法一步制备出羟基磷灰石纳米线/还原氧化石墨烯/纳米金复合材料,并用该复合材料修饰的玻碳电极作为工作电极制造出抗坏血酸氧化酶传感器,该传感器对抗坏血酸的电化学性能结果表明:纳米复合材料修饰的工作电极对抗坏血酸有优异的电化学活性,峰值电流与抗坏血酸浓度呈现良好的线性关系;抗坏血酸氧化酶传感器灵敏度为1.5949×10-2 A/moL,线性检测范围为3.90×10-4~3.60×10-2 mol/L(R2=0.99845),最低检测限为3.39×10-6 mol/L(S/N=3)。实验结果表明该抗坏血酸氧化酶传感器具有灵敏度好,线性检测范围宽,最低检测限小的优点,在对抗坏血酸检测领域具有广泛的应用前景。  相似文献   

16.
在含茜素红的磷酸盐缓冲溶液中,用循环伏安法在制备好的碳纳米管修饰电极上电聚合茜素红膜,得到聚茜素红/碳纳米管复合修饰电极,并对复合修饰电极进行了电化学表征.研究了复合膜修饰电极对双酚A电催化作用的最佳条件.结果表明:双酚A的浓度在5.0×10-7~1.0×10-5mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-8mol/L.该复合修饰电极可作为电化学传感器用于双酚A的含量测定及环境水体中实际样品的分析.  相似文献   

17.
合成了纳米金胶,并将纳米金胶用于制备碳糊修饰电极(Au/CPE),应用循环伏安法研究了多巴胺在纳米金胶碳糊修饰电极上的电化学行为。实验结果表明,纳米金胶对多巴胺的电化学氧化具有明显的催化作用,多巴胺在纳米金胶修饰电极上的氧化电位明显负移,循环伏安峰电流显著增大。缓冲溶液的pH值为4—7时,多巴胺在纳米金胶修饰电极上有很好的电化学响应。在扫速低于300 mV/s范围内,该响应为一表面控制过程,并初步探讨了电催化机理。在0.04 MpH6.37的B-R缓冲溶液中,氧化峰电流与多巴胺的浓度在6.0×10-8—2.6×10-7M的范围内呈较好线性关系,线性相关系数达0.9121。  相似文献   

18.
在碳糊中加入CdTe量子点制成修饰电极(CdTe/CPE),并研究了多巴胺(DA)在该修饰电极上的电化学行为.实验结果表明:在pH 7.0 PBS缓冲液中,电极上的CdTe量子点对DA的氧化还原呈现明显的电催化作用,电催化过程为表面吸附控制过程.闭路吸附时间为60s达到饱和,此电极可用于测定DA,响应迅速(1.5 s).峰电流与DA浓度在4×10-4-5×10-5 mol/L范围内呈线性关系,灵敏度高达0.061 9 A·L/mol,检测极限可达1.4 × 10-6mol/L.  相似文献   

19.
槲皮素在聚对氨基苯磺酸修饰电极上的电化学研究   总被引:1,自引:0,他引:1  
制备了聚对氨基苯磺酸修饰玻碳电极,通过循环伏安法和差分脉冲伏安法研究了槲皮素在该修饰电极上的电化学行为。在pH 5.0的PBS中,槲皮素在修饰电极上能有效富集并在0.333 V产生灵敏的氧化峰。结果表明,这是一个两电子两质子参与的电化学过程,电子转移系数和电极反应速率常数分别为0.55和4.05 s-1。在优化条件下,槲皮素氧化峰电流与其浓度成线性关系,线性范围为8.0×10-8~2.0×10-5mol/L,检测限为4.0×10-8mol/L。该方法用于芦丁水解产物的测定,回收率在98.7%~102.4%。  相似文献   

20.
在pH=5.0的三酸(H3PO4-H3BO3-HAc)盐(PBA)缓冲液中,应用方波循环伏安法,用乙酰苯胺合钴化学修饰圆盘铂电极测定天冬酸和牛黄酸的含量,并优化了实验条件.结果表明,乙酰苯胺合钴修饰圆盘铂电极用于天冬酸和牛黄酸含量的分析,在4.0×10-9~2.0×10-6mol/L浓度范围内天冬酸峰电流与浓度呈良好的线性关系,检出限为1.0×10-9mol/L,回收率在97%左右;在2.0×10-7~2.0×10-5mol/L浓度范围内牛磺酸峰电流与浓度呈良好的线性关系,检出限为2×10-8mol/L,回收率在95%左右.修饰电极灵敏度高,检出限底,具有良好的重现性、稳定性,为氨基酸的电化学检测提供了一个灵敏的新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号