首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we reported that monocyte migration through a barrier of human synovial fibroblasts (HSF) is mediated by the CD11/CD18 (beta2) integrins, and the beta1 integrins VLA-4 and VLA-5 on monocytes. Here we investigated in parallel the role of beta2 integrin family members, LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) on monocytes, and the immunoglobulin supergene family members, ICAM-1 and ICAM-2 on HSF and on human umbilical vein endothelial cells (HUVEC), in monocyte migration through HSF and HUVEC monolayers. Using function blocking monoclonal antibodies (mAb), when both VLA-4 and VLA-5 on monocytes were blocked, treatment of monocytes with mAb to both LFA-1 and to Mac-1 completely inhibited monocyte migration across HSF barriers, although blocking either of these beta2 integrins alone had no effect on migration, even when VLA-4 and VLA-5 were blocked. This indicates that optimal beta2 integrin-dependent monocyte migration in synovial connective tissue may be mediated by either LFA-1 or Mac-1. Both ICAM-1 and ICAM-2 were constitutively expressed on HSF and on HUVEC, although ICAM-2 was only minimally expressed on HSF. Based on results of mAb blockade, ICAM-1 appeared to be the major ligand for LFA-1-dependent migration through the HSF. In contrast, both ICAM-1 and ICAM-2 mediated LFA-1-dependent monocyte migration through HUVEC. However, neither ICAM-1 nor ICAM-2 was required for Mac-1 -dependent monocyte migration through either cell barrier, indicating that Mac-1 can utilize ligands distinct from ICAM-1 and ICAM-2 on HSF and on HUVEC during monocyte transmigration.  相似文献   

2.
Blood neutrophils contribute to joint injury in human and experimental models of arthritis. Neutrophil migration out of the blood in joint inflammation involves both the CD18 (beta2) integrins and a CD18 integrin-independent pathway. To investigate this migration, radiolabeled rat blood neutrophils were used to measure neutrophil accumulation in the inflamed joints of rats with adjuvant arthritis and the role of leukocyte integrins in migration to these joints and to dermal inflammation was determined. Neutrophils migrated rapidly (<2 h) to the inflamed joints 14-18 d after immunization with adjuvant. Blocking monoclonal antibodies (mAbs) to both LFA-1 and Mac-1 together, as well as a mAb to CD18, inhibited neutrophil accumulation in the inflamed joints by 50-75%. However, migration to dermal inflammation induced by C5a(des Arg)' tumor necrosis factor alpha, lipopolysaccharide, and poly-inosine:cytosine was inhibited by approximately 90%. Flow cytometry revealed the expression of low levels of very late antigen 4 (VLA-4) on nearly all rat blood neutrophils. Treatment with anti-VLA-4 plus anti-LFA-1 but neither mAb alone, strongly (60-75%) inhibited neutrophil accumulation in arthritic joints. This mAb combination also inhibited neutrophil migration to dermal inflammatory reactions by 30-70%. Blocking VLA-4 together with the CD18 integrins inhibited neutrophil accumulation by 95-99%, virtually abolishing neutrophil accumulation in cutaneous inflammation. A similar blockade of VLA-4 and CD18 decreased neutrophil accumulation in the inflamed joints by 70-83%, but a significant portion of the neutrophil accumulation to these joints still remained. In conclusion, rat blood neutrophils express functional VLA-4 that can mediate neutrophil migration to both inflamed joints and dermal inflammatory sites. VLA-4 appears to be able to substitute for LFA-1 in this migration and is particularly important for accumulation in inflamed joints. However, there exists an additional CD18- and VLA-4-independent pathway of neutrophil migration to arthritic joints that is not involved in acute dermal inflammation.  相似文献   

3.
Leukocyte emigration possibly requires dynamic regulation of integrin adhesiveness for endothelial and extracellular matrix ligands. Adhesion assays on purified vascular cell adhension molecule (VCAM)-1, fibronectin, and fibronectin fragments revealed distinct kinetic patterns for the regulation of very late antigen (VLA)-4 (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) avidity by the CC chemokines monocyte inflammatory protein (MIP)-1 alpha, RANTES (regulated on activation, normal T expressed and secreted), or monocyte chemoattractant protein (MCP)-1 in monocytes. CC chemokines induced early activation and subsequent deactivation of VLA-4, whereas upregulation of VLA-5 avidity occurred later and persisted. Controlled detachment assays in shear flow suggested that adhesive strength of VLA-4 for VCAM-1 or the 40-kD fragment of fibronectin (FN40) is more rapidly increased and subsequently reduced by MCP-1 than by MIP-1 alpha, and confirmed late and sustained activation of the adhesive strength of VLA-5 for the 120-kD fragment of fibronectin (FN120). Mn2+ or the stimulating beta 1 mAb TS2/16 strongly and stably enhanced monocyte binding to VCAM-1 or fibronectin, and locked beta 1 integrins in a high avidity state, which was not further modulated by CC chemokines. Mn2+ and mAb TS2/16 inhibited CC chemokine-induced transendothelial migration, particularly chemotaxis across stimulated endothelium that involved VLA-4 and VCAM-1. VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1. Low but not high site densities of VCAM-1 or FN40 promoted, while FN120 impaired, beta 1 integrin-dependent monocyte chemotaxis to MCP-1 across filters coated with these substrates. Thus, we show that CC chemokines can differentially and selectively regulate avidity of integrins sharing common beta subunits. Transient activation and deactivation of VLA-4 may serve to facilitate transendothelial diapedesis, whereas late and prolonged activation of VLA-5 may mediate subsequent interactions with the basement membrane and extracellular matrix.  相似文献   

4.
Modulation of VLA integrins was studied in several human T cell clones upon specific and nonspecific cellular activation. Human activated T lymphocytes down-regulated both alpha 4 beta 1 and alpha 4 beta 7 integrins upon specific recognition of alloantigens (cytotoxic T cells) or in the presence of Staphylococcus enterotoxin B (superantigen recognizing noncytotoxic T cells). In contrast, the expression of other membrane integrins, such as VLA-1 and VLA-5 integrins, was not modified. Down-regulation of alpha 4 beta 1 and alpha 4 beta 7 integrins was observed as early as 3 h after stimulation, lasted later than 72 h and was partially inhibited by cytochalasin D. Interestingly, neither target cells nor NK cells modulated CD49d expression after interaction with T cells of K562, respectively, suggesting that CD49d expression was linked to specific T cell activation. The down-regulation of the CD49d chain in T cell clones stimulated with immobilized anti-CD3 mAbs confirmed the role of TCR-mediated activation in CD49d regulation. However, the CD3-independent cellular aggregation induced by soluble anti-CD43 mAb was also able to strongly down-regulate alpha 4 beta 1 and alpha 4 beta 7. The present work shows the first evidence that CD49d subunit-bearing integrin expression is distinctly regulated from other integrins after Ag or superantigen recognition by human activated T cells. CD49d modulation may be relevant for the traffic and tissue localization of locally activated T cells during immune responses.  相似文献   

5.
We examined chemotaxis of human plasma cells (PCs) in response to extracellular matrix proteins (ECMs) in the human PC cell lines FR4ds and OPM-1ds. The FR4ds cells expressed beta 1+, beta 3-, alpha 2-, alpha 3-, alpha 4+, alpha 5+, alpha 6+, and alpha v+ integrins, whereas the OPM-1ds cells expressed beta 1+, beta 3-, alpha 2-, alpha 3+, alpha 4+, alpha 5-, alpha 6+, and alpha v+. Fibronectin (FN) and laminin (LN) promoted the chemotaxis of the PCs. An inhibitory assay with anti-integrin monoclonal antibodies (MoAbs) showed that anti-alpha 4 MoAb partially inhibited the chemotaxis of FR4ds and completely inhibited the chemotaxis of OPM-1ds. Anti-alpha 5 MoAb alone had no effect on either of these two lines. Nevertheless, anti-alpha 5 MoAb completely inhibited chemotaxis when it was added with anti-alpha 4 in FR4ds, demonstrating a novel complementary role of VLA-5 toward VLA-4 in the chemotaxis induced by FN. LN facilitated chemotaxis both in OPM-1ds expressing alpha 3 and alpha 6 integrins and in FR4ds expressing alpha 6 integrin alone. Anti-alpha 6 MoAb completely inhibited FR4ds chemotaxis, whereas anti-alpha 3 and -alpha 6 MoAb had synergistic inhibitory effects on the chemotaxis of OPM-1ds. These results indicated that the distribution of PCs in human tissue are determined by at least two factors: the concentration of the ECM proteins FN and LN and the expression of integrins.  相似文献   

6.
Recruitment of leukocytes from blood to tissue in inflammation requires the function of specific cell surface adhesion molecules. The objective of this study was to identify adhesion molecules that are involved in polymorphonuclear leukocyte (PMN) locomotion in extravascular tissue in vivo. Extravasation and interstitial tissue migration of PMNs was induced in the rat mesentery by chemotactic stimulation with platelet-activating factor (PAF; 10(-7) M). Intravital time-lapse videomicroscopy was used to analyze migration velocity of the activated PMNs, and the modulatory influence on locomotion of locally administered antibodies or peptides recognizing various integrin molecules was examined. Immunofluorescence flow cytometry revealed increased expression of alpha4, beta1, and beta2 integrins on extravasated PMNs compared with blood PMNs. Median migration velocity in response to PAF stimulation was 15.5 +/- 4.5 micron/min (mean +/- SD). Marked reduction (67 +/- 7%) in motility was observed after treatment with mAb blocking beta1 integrin function (VLA integrins), whereas there was little, although significant, reduction (22 +/- 13%) with beta2 integrin mAb. Antibodies or integrin-binding peptides recognizing alpha4beta1, alpha5beta1, or alphavbeta3 were ineffective in modulating migration velocity. Our data demonstrate that cell surface expression of beta1 integrins, although limited on blood PMNs, is induced in extravasated PMNs, and that members of the beta1 integrin family other than alpha4beta1 and alpha5beta1 are critically involved in the chemokinetic movement of PMNs in rat extravascular tissue in vivo.  相似文献   

7.
The beta 1 subfamily of integrins is thought to play an important role in both the adhesion/migration and proliferation/differentiation of T cells. beta 1 integrins can provide T cell costimulation through interaction of very late antigen (VLA) 4 (VLA-4) (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) with the extracellular matrix protein fibronectin (FN), or by VLA-4 binding to its cell surface ligand, vascular cell adhesion molecule (VCAM) 1. The mechanism by which beta 1 integrin members transduce T cell-costimulatory signals is poorly understood. Studies in non-T cells have demonstrated regulation of the tyrosine focal adhesion kinase pp125FAK by beta 1 integrin engagement and, most recently, indicate a role for pp125FAK in linking integrin-mediated signal transduction to the Ras pathway (Schaller, M. D., and J. T. Parsons, 1994, Curr. Opin. Cell. Biol. 6: 705-710; Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. Van der Geer. 1994. Nature (Lond.), 372:786-790). Although pp125FAK kinase occurs in T cells, there are no reports on its regulation in this cell type. The studies described in this article characterize novel regulation of pp125FAK by the T cell receptor (TCR)-CD3 antigen complex and beta 1 integrins, and provide the first account, in any cell type, of integrin alpha 4 beta 1-mediated pp125FAK tyrosine phosphorylation. We demonstrate a rapid and sustained synergistic increase in tyrosine phosphorylation of human pp125FAK in Jurkat T cells after simultaneous (a) triggering of the TCR-CD3 complex, and (b) alpha 4 beta 1 and alpha 5 beta 1 integrin-mediated binding of these cells to immobilized FN or alpha 4 beta 1 integrin-mediated binding to immobilized VCAM-1. Studies with normal peripheral blood-derived CD4+ human T blasts confirm the synergistic action of a TCR-CD3 complex-mediated costimulus with a FN- or VCAM-1-dependent signal in the induction of T cell pp125FAK tyrosine phosphorylation. In vitro kinase assays performed on pp125FAK immunoprecipitates isolated from Jurkat cells and normal CD4+ T cells identified a coprecipitating 57-kD tyrosine-phosphorylated protein (pp57), distinct from pp59fyn or pp56lck. These results indicate, for the first time, the involvement of a specific kinase, pp125FAK, in alpha 4 beta 1- and alpha 5 beta 1-mediated T cell-costimulatory signaling pathways. In addition, the data demonstrate novel regulation of pp125FAK tyrosine phosphorylation by the TCR-CD3 complex.  相似文献   

8.
It has been shown that cells with high affinity very late Ag (VLA)-integrins have up-regulated expression of a beta1-subunit epitope, which is detected by 15/7 mAb. In this study, we demonstrate that soluble VCAM-1 (sVCAM-1) exhibits chemotactic activity of T cells with high affinity VLA-4 against VCAM-1, such as Jurkat T cells and IL-2-dependent T cells. Moreover, we found that T cells in the synovial fluid show high basal migration in the absence of sVCAM-1, compared with peripheral blood T cells in patients with rheumatoid arthritis. Among T cells in the synovial fluid, CD45RO+ memory T cells, in response to sVCAM-1, showed a much higher than basal migratory response when compared with CD45RA+ naive cells, while no significant difference was observed between CD4+ and CD8+ T cells. The chemotactic activity of sVCAM-1 is inhibited in the presence of anti-VCAM-1 and anti-VLA-4, which interfered with the binding between VCAM-1 and VLA-4. Inhibition studies using various kinase inhibitors (C3 exoenzyme, KN62, and H7) show that Rho, Ca2+/calmodulin-dependent kinase II, and protein kinase C are involved in signal transduction in sVCAM-1-induced chemotaxis, respectively, whereas tyrosine kinase seems to play a lesser role, since genistein showed only partial inhibition of T cell chemotaxis. Western blot analysis using an anti-phospho-serine mAb (MO82) reveals that Ser82 in the vimentin is phosphorylated specifically by Ca2+/calmodulin-dependent kinase II through sVCAM-1 activation in the IL-2 dependent T cells. Collectively, by inducing migration and recruitment of T cells through several kinase activations, sVCAM-1 contributes to the development of the inflammation of synovial lesion.  相似文献   

9.
Erythropoietin (EPO) and thrombopoietin (c-MPL ligand; TPO) are structurally similar cytokines and support respectively, the proliferation and differentiation for erythroid and megakaryocytic lineages, as well as more primitive progenitors. We studied the effect of these cytokines on the induction of adhesion of human growth-factor-dependent hematopoietic cells to immobilized fibronectin, which is a main component of the extracellular matrix in the bone marrow. MO7ER cells that are genetically engineered to express human EPO receptor and MO7e cells that express endogenous c-MPL were used. Stimulation with either TPO or EPO induced rapid increases in adhesion of M07ER cells to fibronectin without apparent change of expression of integrins. Experiments with inhibitory monoclonal antibodies (mAbs) demonstrated that CD41, which has been reported to be involved in TPO-induced adhesion of megakaryocytic cells, is not responsible for this enhanced adhesion. Anti-beta 1 integrin mAb inhibited adhesion completely, while inhibition by anti-alpha 4 integrin mAb and anti-alpha 5 integrin mAb was partial. Combination of anti-alpha 4 mAb plus anti-alpha 5 mAb completely abolished adhesion, as did anti-beta 1 mAb, suggesting that the adhesion is mediated by both alpha 4 beta 1 and alpha 5 beta 1 integrins. Experiments using inhibitors suggested that ligand binding followed by activation of intracellular tyrosine kinases along with PI3-kinase activation is required. After stimulation of M07ER cells with either TPO or EPO, fibronectin-attached cells, but not cells in suspension, showed tyrosine phosphorylation of focal adhesion kinase, which plays a central role in integrin-mediated signaling. These data suggest that TPO and EPO might be involved in homing/migration to the bone marrow microenvironment by hematopoietic cells that express corresponding receptors.  相似文献   

10.
A prominent feature of Lyme disease is the perivascular accumulation of mononuclear leukocytes. Incubation of human umbilical vein endothelial cells (HUVEC) cultured on amniotic tissue with either interleukin-1 (IL-1) or Borrelia burgdorferi, the spirochetal agent of Lyme disease, increased the rate at which human monocytes migrated across the endothelial monolayers. Very late antigen 4 (VLA-4) and CD11/CD18 integrins mediated migration of monocytes across HUVEC exposed to either B. burgdorferi or IL-1 in similar manners. Neutralizing antibodies to the chemokine monocyte chemoattractant protein 1 (MCP-1) inhibited the migration of monocytes across unstimulated, IL-1-treated, or B. burgdorferi-stimulated HUVEC by 91% +/- 3%, 65% +/- 2%, or 25% +/- 22%, respectively. Stimulation of HUVEC with B. burgdorferi also promoted a 6-fold +/- 2-fold increase in the migration of human CD4(+) T lymphocytes. Although MCP-1 played only a limited role in the migration of monocytes across B. burgdorferi-treated HUVEC, migration of CD4(+) T lymphocytes across HUVEC exposed to spirochetes was highly dependent on this chemokine. The anti-inflammatory cytokine IL-10 reduced both migration of monocytes and endothelial production of MCP-1 in response to B. burgdorferi by approximately 50%, yet IL-10 inhibited neither migration nor secretion of MCP-1 when HUVEC were stimulated with IL-1. Our results suggest that activation of endothelium by B. burgdorferi may contribute to formation of the chronic inflammatory infiltrates associated with Lyme disease. The transendothelial migration of monocytes that is induced by B. burgdorferi is significantly less dependent on MCP-1 than is migration induced by IL-1. Selective inhibition by IL-10 further indicates that B. burgdorferi and IL-1 employ distinct mechanisms to activate endothelial cells.  相似文献   

11.
Among human CD4+ T lymphocytes, 5-20% express the C-type lectin molecule NKRP1A. Interestingly, CD4+ NKRP1A+ T lymphocytes express high levels of beta 1 and beta 2 integrins, thus representing a T lymphocyte subset that can possibly adhere and migrate through vascular endothelium. Indeed, resting CD4+ NKRP1A+ lymphocytes, differently from the CD4+ NKRP1A- subset, migrated across endothelial cell monolayers in a Transwell chamber system. This transendothelial migration was strongly reduced after pre-treatment with an anti-NKRP1A monoclonal antibody (mAb). In addition, the NKRP1A negative Jurkatt CD4+ T-cell line that had been stably transfected with NKRP1A cDNA, migrated more rapidly and efficiently than untransfected Jurkatt cells. Finally, mAb-mediated cross-linking of NKRP1A molecule in CD4+ T lymphocytes induced the upregulation of the LFA1 Mg2+ binding site as well as beta 1 and beta 2 integrin chains. Altogether, these findings indicate that NKRP1A molecule is involved in transendothelial migration of resting CD4+ T lymphocytes.  相似文献   

12.
TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.  相似文献   

13.
The very late antigen (VLA)-4 and VLA-5 integrins mediate hematopoietic progenitor cell attachment to bone marrow (BM) stroma. Transforming growth factor-beta1 (TGF-beta1) is a cytokine present in the BM microenvironment that has been shown to regulate the synthesis of adhesion elements in several cell types. We have investigated whether TGF-beta1 action on human BM stromal cells affected the adhesion of progenitor cells involving integrins VLA-4 and VLA-5. Two precursor cell lines, pre-B Nalm-6 and the multipotential UT-7, attached to untreated primary stroma and to the human BM stromal cell line Str-5 preferentially using VLA-4. However, treatment of the stroma with TGF-beta1 resulted in a significant reduction in the participation of VLA-4 in mediating precursor cell adhesion to stroma and a concomitant increase in the utilization of VLA-5. This effect was not exclusive of normal BM stroma. Treatment with TGF-beta1 of stroma from multiple myeloma BM samples produced a substantial increase in VLA-5 use by the myeloma cell line NCI-H929 to adhere to this stroma. The differential use of VLA-4 and VLA-5 correlated with an increase in fibronectin surface expression by stromal cells in response to TGF-beta1. Adhesion assays to purified fibronectin using Nalm-6 cells showed a predominant utilization of VLA-4 at low concentrations of this ligand, whereas higher concentrations resulted in a preferential use of VLA-5. These results indicate that regulation of fibronectin expression on BM stromal cells by TGF-beta1 results in a modulation of the pattern of integrins used by the precursor and myeloma cells to adhere to BM stroma, which could have important consequences on the proliferation and differentiation of hematopoietic precursor cells as well as on the localization and growth of myeloma cells.  相似文献   

14.
Mesenteric lymph nodes (MLN) drain the gut where nutritive antigens and pathogens are encountered by lymphocytes of the gut-associated lymphoid tissue. We sought to determine how lymphocytes enter the MLN by studying mice double deficient for beta7 integrins and L-selectin. beta7/L-selectin double-deficient lymphocytes did not migrate into MLN. Most importantly, MLN formation was drastically impaired in beta7/L-selectin double-deficient mice. Lymphocyte numbers in MLN from beta7/L-selectin double-deficient mice were tenfold reduced compared to control mice. A high percentage of the few lymphocytes still detected in MLN from beta7/L-selectin double-deficient mice were CD44hi CD18hi, suggesting alternate migration pathways independent of L-selectin and beta7 integrin for these cells. We conclude that the combination of both molecules, L-selectin and beta7 integrin, is indispensable for MLN formation and that these molecules may mediate lymphocyte migration to MLN in a sequential and synergistical manner.  相似文献   

15.
In the hemopoietic system, interactions between stem cells and components of the bone marrow microenvironment play a pivotal role in blood cell proliferation and differentiation. Among the adhesion molecules, the integrins of the beta 1-subfamily are known to direct cell-cell and cell-matrix interactions and evidence has been provided that CD34-positive stem cells bind either to the bone marrow stroma or to the extracellular matrix proteins through the beta 1-integrins. It seems that changes in their expression pattern or signalling function are likely to reflect disturbances at the hemopoietic bone marrow microenvironmental level. Any alteration of their biological functions makes them attractive candidates for playing decisive roles in the leukemic processes. In this view, beta 1-integrins have been recognized to mediate those cellular interactions and migrations that are important in the biology of leukemia. In this paper we review some aspects of the role played by beta 1-integrins, especially VLA-4 and VLA-5, in adult acute lymphoblastic leukemia in relation with the expression rate of the stem cell antigen CD34.  相似文献   

16.
In this report, we show that among human CD4+ T lymphocytes 5-20% express the C-type lectin molecule NKRP1A. This lymphocyte subset displays a slightly more limited T cell receptor V beta repertoire than the CD4+ NKRP1A- counterpart. CD4+ NKRP1A+ T lymphocytes are characterized by a high expression of beta 1 and beta 2 integrins, thus representing a T lymphocyte subset that can possibly adhere and migrate through vascular endothelium. Indeed, resting CD4+ NKRP1A+ lymphocytes, differently from the CD4+ NKRP1A- subset, migrated across endothelial cell monolayers in a Transwell chamber system. Pretreatment of CD4+ NKRP1A+ T lymphocytes with an anti-NKRP1A monoclonal antibody (mAb) strongly reduced transendothelial migration, suggesting the involvement of the NKRP1A molecule in the transmigration process. Furthermore, cells of the NKRP1A- Jurkat CD4+ T cell line stably transfected with NKRP1A cDNA migrated more rapidly and efficiently than either untransfected or mock-transfected Jurkat cells. Finally, mAb-mediated cross-linking of NKRP1A molecules in CD4+ T lymphocytes induced the up-regulation of the lymphocyte function-associated antigen 1 Mg(2+)-binding site as well as beta 1 and beta 2 integrin chains. Altogether, these findings suggest that the NKRP1A molecule is involved in transendothelial migration of resting CD4+ T lymphocytes.  相似文献   

17.
Cell adhesion molecules are glycoproteins expressed on the cell surface and play an important role in inflammatory as well as neoplastic diseases. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. The integrin family has eight subfamilies, designated as beta 1 through beta 8. The most widely studied subfamilies are beta 1 (CD29, very late activation [VLA] members), beta 2 (leukocyte integrins such as CD11a/CD18, CD11b/CD18, CD11c/CD18, and alpha d beta 2), beta 3 (CD61, cytoadhesions), and beta 7 (alpha 4 beta 7 and alpha E beta 7). The immunoglobulin superfamily includes leukocyte function antigen-2 (LFA-2 or CD2), leukocyte function antigen-3 (LFA-3 or CD58), intercellular adhesion molecules (ICAMs), vascular adhesion molecule-1 (VCAM-1), platelet-endothelial cell adhesion molecule-1 (PE-CAM-1), and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). The selectin family includes E-selectin (CD62E), P-selectin (CD62P), and L-selectin (CD62L). Cadherins are major cell-cell adhesion molecules and include epithelial (E), placental (P), and neural (N) subclasses. The binding sites (ligands/receptors) are different for each of these cell adhesion molecules (e.g., ICAM binds to CD11/CD18; VCAM-1 binds to VLA-4). The specific cell adhesion molecules and their ligands that may be involved in pathologic conditions and potential therapeutic strategies by modulating the expression of these molecules will be discussed.  相似文献   

18.
It is well established that integrins and extracellular matrix (ECM) play key roles in cell migration, but the underlying mechanisms are poorly defined. We describe a novel mechanism whereby the integrin alpha 6 beta 1, a laminin receptor, can affect cell motility and induce migration onto ECM substrates with which it is not engaged. By using DNA-mediated gene transfer, we expressed the human integrin subunit alpha 6A in murine embryonic stem (ES) cells. ES cells expressing alpha 6A (ES6A) at the surface dimerized with endogenous beta 1, extended numerous filopodia and lamellipodia, and were intensely migratory in haptotactic assays on laminin (LN)-1. Transfected alpha 6A was responsible for these effects, because cells transfected with control vector or alpha 6B, a cytoplasmic domain alpha 6 isoform, displayed compact morphology and no migration, like wild-type ES cells. The ES6A migratory phenotype persisted on fibronectin (Fn) and Ln-5. Adhesion inhibition assays indicated that alpha 6 beta 1 did not contribute detectably to adhesion to these substrates in ES cells. However, anti-alpha 6 antibodies completely blocked migration of ES6A cells on Fn or Ln-5. Control experiments with monensin and anti-ECM antibodies indicated that this inhibition could not be explained by deposition of an alpha 6 beta 1 ligand (e.g., Ln-1) by ES cells. Cross-linking with secondary antibody overcame the inhibitory effect of anti-alpha 6 antibodies, restoring migration or filopodia extension on Fn and Ln-5. Thus, to induce migration in ES cells, alpha 6A beta 1 did not have to engage with an ECM ligand but likely participated in molecular interactions sensitive to anti-alpha 6 beta 1 antibody and mimicked by cross-linking. Antibodies to the tetraspanin CD81 inhibited alpha 6A beta 1-induced migration but had no effect on ES cell adhesion. It is known that CD81 is physically associated with alpha 6 beta 1, therefore our results suggest a mechanism by which interactions between alpha 6A beta 1 and CD81 may up-regulate cell motility, affecting migration mediated by other integrins.  相似文献   

19.
Apoptosis of human polymorphonuclear neutrophils (PMN) is thought to be critical for the control of the inflammatory process, but the mechanisms underlying its regulation in physiological settings are still incompletely understood. This study was undertaken to test the hypothesis that the beta2 integrin (CD11/CD18) family of leukocyte adhesion molecules contributes to the control of activated PMN by up-regulating apoptosis. Apoptosis of isolated human PMN was investigated by 1) analysis of DNA content, 2) detection of DNA degradation, 3) morphological studies, and 4) measurement of CD16 expression on the cell surface. We found that beta2 integrins potentiated the tumor necrosis factor alpha (TNF-alpha) -induced apoptosis within 4 and 8 h after stimulation. The effect required aggregation of the beta2 integrin Mac-1 (CD11b/CD18), which was induced by antibody cross-linking, and was independent of Fc receptors. An enhancement of apoptosis was also observed after migration of PMN through an endothelial cell monolayer. TNF-alpha-induced apoptosis as well as potentiation by beta2 integrins was prevented by inhibition of tyrosine kinases with herbimycin A or genistein. The present study provides a new model for the regulation of PMN apoptosis by a functional cross-talk between beta2 integrins and TNF-alpha with a promoting role for the beta2 integrins. This mechanism, which allows enhanced elimination of previously emigrated PMN, may be critical to abate local inflammatory processes in vivo.  相似文献   

20.
PURPOSE: Smooth muscle cell (SMC) migration is an essential feature of the intimal hyperplastic process that so frequently limits the patency of vascular reconstructions. The purpose of this investigation was to evaluate the effect of a series of integrins, or cell surface receptors that mediate cellular attachment, on platelet-derived growth factor (PDGF) and extracellular matrix (ECM) protein-induced migration of human SMCs. METHODS: Immunofluorescence staining was used to search for various integrins and subunits on the surface of SMCs derived from human saphenous vein. Chemotaxis and haptotaxis of SMCs to various matrix proteins and PDGF were assayed using a 48-well microchemotaxis chamber in the presence or absence of antibodies that blocked the function of these integrins. RESULTS: Several subunits (beta 1, alpha 2, alpha 5) and one integrin (alpha v beta 3) were identified in saphenous vein SMCs. The beta 1 integrin antibody inhibited chemotaxis to collagen I and IV, laminin, and PDGF. The alpha 2 integrin antibody inhibited collagen I and IV, and laminin-induced chemotaxis. The alpha 5 integrin antibody had no effect on SMC migration. The alpha v beta 3 integrin antibody inhibited chemotaxis to PDGF but not to the ECM proteins. CONCLUSIONS: Integrins are necessary for SMC migration induced by PDGF and ECM proteins. The integrin or subunits responsible for facilitating migration varies with the stimulant. Agonists designed to inhibit integrin function might be used to suppress SMC migration and suppress the formation of intimal hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号