首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)–based DSPs, scaling represents a performance bottleneck based on the complexity of inter‐modulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well‐known moduli sets {2n ? 1, 2n, 2n + 1} and {2n, 2n ? 1, 2n+1 ? 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic‐friendly moduli set {2n+p, 2n ? 1, 2n+1 ? 1}. The proposed algorithm yields high speed and energy‐efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed‐radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.  相似文献   

2.
Thermoelectric materials are attractive since they can recover waste heat directly in the form of electricity. In this study, the thermoelectric properties of ternary rare-earth sulfides LaGd1+x S3 (x = 0.00 to 0.03) and SmGd1+x S3 (x = 0.00 to 0.06) were investigated over the temperature range of 300 K to 953 K. These sulfides were prepared by CS2 sulfurization, and samples were consolidated by pressure-assisted sintering to obtain dense compacts. The sintered compacts of LaGd1+x S3 were n-type metal-like conductors with a thermal conductivity of less than 1.7 W K−1 m−1. Their thermoelectric figure of merit ZT was improved by tuning the chemical composition (self-doping). The optimized ZT value of 0.4 was obtained in LaGd1.02S3 at 953 K. The sintered compacts of SmGd1+x S3 were n-type hopping conductors with a thermal conductivity of less than 0.8 W K−1 m−1. Their ZT value increased significantly with temperature. In SmGd1+x S3, the ZT value of 0.3 was attained at 953 K.  相似文献   

3.
Three Ta-doped strontium titanates were prepared as potential candidates for n-type thermoelectric oxides. The purity of the polycrystalline samples of SrTi1−x Ta x O3 (x = 0.05 to 0.14) were characterized by means of powder x-ray diffraction and electron probe micro analysis (EPMA). We present the results of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements performed at high temperatures.  相似文献   

4.
Simulation experiments on both series and parallel electromigration (EM) test structures were carried out under current (or voltage) stress and further analysed by means of the total resistance (TR) analysis and a software package “failure” in order to calculate and to compare the behaviour of both EM test structures. These simulation experiments show that the parallel EM test structure is a correct approach for the determination of the failure time of submicron interconnects, the activation energy and the current density exponent n of the thermally driven process, therefore leading to a very substantial reduction of the number of samples that are needed to perform the EM tests.  相似文献   

5.
An ultralow-thermal-conductivity compound with the ideal formula [(PbSe)1.00]1[MoSe2]1 has been successfully crystallized across a range of compositions. The lattice parameters varied from 1.246 nm to 1.275 nm, and the quality of the observed 00 diffraction patterns varied through the composition region where the structure crystallized. Measured resistivity values ranged over an order of magnitude, from 0.03 Ω m to 0.65 Ω m, and Seebeck coefficients ranged from −181 μV K−1 to 91 μV K−1 in the samples after the initial annealing to form the basic structure. Annealing of samples under a controlled atmosphere of selenium resulted in low conductivities and large negative Seebeck coefficients, suggesting an n-doped semiconductor. Scanning transmission electron microscopy cross-sections confirmed the interleaving of bilayers of PbSe with Se-Mo-Se trilayers. High-angle annular dark-field images revealed an interesting volume defect, where PbSe grew through a region where a layer of MoSe2 would be expected in the perfect structure. Further studies are required to correlate the density of these defects with the observed electrical properties.  相似文献   

6.
n-Type 4H-SiC bulk samples with a net doping concentration of 2.5 × 1017 cm−3 were irradiated at room temperature with 1-MeV electrons. The high doping concentration plus a reverse bias of up to −13 V ensures high electric field in the depletion region. The dependence of the emission rate on the electric field in the depletion region was measured using deep-level transient spectroscopy (DLTS) and double-correlation deep-level transient spectroscopy (DDLTS). The experimental data are adequately described by the phonon-assisted tunneling model proposed by Karpus and Pere.  相似文献   

7.
Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic–inorganic perovskite materials, which are predominantly based on Ruddlesden‐Popper structures. Formamidinium (FA)‐based Dion‐Jacobson perovskite analogs are developed that feature bifunctional organic spacers separating the hybrid perovskite slabs by introducing 1,4‐phenylenedimethanammonium (PDMA) organic moieties. While these materials demonstrate competitive performances as compared to other FA‐based low‐dimensional perovskite solar cells, the underlying mechanisms for this behavior remain elusive. Here, the structural complexity and optoelectronic properties of materials featuring (PDMA)FAn–1PbnI3n+1 (n = 1–3) formulations are unraveled using a combination of techniques, including X‐ray scattering measurements in conjunction with molecular dynamics simulations and density functional theory calculations. While theoretical calculations suggest that layered Dion‐Jacobson perovskite structures are more prominent with the increasing number of inorganic layers (n), this is accompanied with an increase in formation energies that render n > 2 compositions difficult to obtain, in accordance with the experimental evidence. Moreover, the underlying intermolecular interactions and their templating effects on the Dion‐Jacobson structure are elucidated, defining the optoelectronic properties. Consequently, despite the challenge to obtain phase‐pure n > 1 compositions, time‐resolved microwave conductivity measurements reveal high photoconductivities and long charge carrier lifetimes. This comprehensive analysis thereby reveals critical features for advancing layered hybrid perovskite optoelectronics.  相似文献   

8.
Bismuth sulfide (Bi2S3) polycrystalline samples were fabricated by mechanical alloying (MA) combined with spark plasma sintering (SPS). The microstructure and electrical transport properties were investigated with special emphasis on the influence of the ball-milling process. Bi2S3 compound powders could be readily synthesized directly from elemental powders under all the investigated conditions, and highly dense n-type bulk Bi2S3 samples with high density (>95%) were fabricated by the subsequent SPS process. Changing the MA conditions had no apparent influence on the microstructure or phase structure of the MA-derived Bi2S3 powders, but the electrical properties and thermopower of the SPS-sintered Bi2S3 bulk samples were greatly dependent on the MA speed and time. The power factor of Bi2S3 was increased to 233 μW K−2 m−1 at 573 K by optimizing the ball-milling process. This power factor is higher than values reported to date for Bi-S binary samples without texture.  相似文献   

9.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K.  相似文献   

10.
The thermoelectric characteristics of commercial polycrystalline Mg2Si doped with Bi, Al + Bi, Ag, and Cu were examined. The samples for the thermoelectric measurements were prepared using the plasma-activated sintering (PAS) technique. The measured values of the Seebeck coefficient were compared with values calculated using the all-electron band-structure calculation package (ABCAP) based on a full-potential augmented-plane-wave (FLAPW) band-structure calculation in a local density approximation (LDA). For the Bi + Al-co-doped samples, the observed values of the dimensionless figure of merit, ZT, were higher than those of solely Bi-doped samples. The maximum value obtained for Bi + Al-doped Mg2Si was 0.77 at 862 K. For the Ag-doped samples, ZT was significantly lower than that of the Bi + Al-doped samples, with the maximum value being about 0.11 at 873 K.  相似文献   

11.
We demonstrated that manganese (Mn)-doped GaN nanowires (NWs) exhibit p-type characteristics using current–voltage (IV) characteristics in both heterojunction pn structures (GaN:Mn NWs/n-Si substrate) and pp structures (GaN:Mn NWs/p-Si). The heterojunction pn diodes were formed by the coupling of the Mn-doped GaN NWs with an n-Si substrate by means of an alternating current (AC) dielectrophoresis-assisted assembly deposition technique. The GaN:Mn NWs/n-Si diode showed a clear current-rectifying behavior with a forward voltage drop of 2.4 V to 2.8 V, an ideality factor of 30 to 37, and a parasitic resistance in the range of 93 kΩ to 130 kΩ. On the other hand, we observed that other heterojunction structures (GaN:Mn NWs/p-Si) showed no rectifying behaviors as seen in pp junction structures.  相似文献   

12.
Te-doped Mg2Si (Mg2Si:Te m , m = 0, 0.01, 0.02, 0.03, 0.05) alloys were synthesized by a solid-state reaction and mechanical alloying. The electronic transport properties (Hall coefficient, carrier concentration, and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit) were examined. Mg2Si was synthesized successfully by a solid-state reaction at 673 K for 6 h, and Te-doped Mg2Si powders were obtained by mechanical alloying for 24 h. The alloys were fully consolidated by hot-pressing at 1073 K for 1 h. All the Mg2Si:Te m samples showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased and the absolute value of the Seebeck coefficient decreased with increasing Te content, because Te doping increased the electron concentration considerably from 1016 cm−3 to 1018 cm−3. The thermal conductivity did not change significantly on Te doping, due to the much larger contribution of lattice thermal conductivity over the electronic thermal conductivity. Thermal conduction in Te-doped Mg2Si was due primarily to lattice vibrations (phonons). The thermoelectric figure of merit of intrinsic Mg2Si was improved by Te doping.  相似文献   

13.
The thermoelectric properties of Y-doped (1000 ppm, 2000 ppm, 3000 ppm) Mg2Si fabricated using field-activated pressure-assisted synthesis (FAPAS) have been characterized using measurements of electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) at temperatures ranging from 285 K to 810 K. The Y-doped Mg2Si samples were n-type in the measured temperature range. A first-principles calculation revealed that the Y atoms were expected to be primarily located at Mg sites. In sample doped with 2000 ppm Y, which exhibited the best electrical and thermal conductivity, the absolute value of the Seebeck coefficient increased in the temperature range of 320 K to 680 K, being higher than that of undoped Mg2Si. Moreover, this sample exhibited a higher level of electrical conductivity and a higher power factor. In addition, introduction of Y decreased the thermal conductivity appreciably, indicating that Y dopants are favorable for improving the properties of Mg2Si.  相似文献   

14.
The fabrication procedure for silicon carbide power metal oxide semiconductor field-effect transistors can be improved through simultaneous formation (i.e., using the same contact materials and a one-step annealing process) of ohmic contacts on both the n-source and p-well regions. We have succeeded in the simultaneous formation of Ni/Al ohmic contacts to n- and p-type SiC after annealing at 1000°C for 5 min in an ultrahigh vacuum. Ohmic contacts to n-type SiC were found when the Al-layer thickness was less than about 6 nm, while ohmic contacts to p-type SiC were observed for an Al-layer thickness greater than about 5 nm. Only the contacts with an Al-layer thickness in the range of 5 nm to 6 nm exhibited ohmic behavior to both n- and p-type SiC, with a specific contact resistance of 1.8 × 10−4 Ω cm2 and 1.2 × 10−2 Ω cm2 for n- and p-type SiC, respectively. An about 100-nm-thick contact layer was uniformly formed on the SiC substrate, and polycrystalline δ-Ni2Si(Al) grains were formed at the contact/SiC interface. In the samples that exhibited ohmic behavior to both n- and p-type SiC, the distribution of the Al/Ni ratios in the δ-Ni2Si(Al) grains was larger than that observed for any of the samples that showed ohmic behavior to either n- or p-type SiC. Furthermore, the grain size of the δ-Ni2Si(Al) grains in the samples showing ohmic behavior to both n- and p-type SiC was smaller than the grains in any of the samples that showed ohmic behavior to either n- or p-type SiC. Thus, the large distribution in the Al/Ni ratios and a fine microstructure were found to be characteristic of the ohmic contacts to both n- and p-type SiC. Grains with a low Al concentration correspond to ohmic contacts to n-type SiC, while grains with a high Al concentration correspond to ohmic contacts to p-type SiC.  相似文献   

15.
Ternary rare-earth sulfides NdGd1+x S3, where 0 ≤ x ≤ 0.08, were prepared by sulfurizing Ln2O3 (Ln = Nd, Gd) with CS2 gas, followed by reaction sintering. The sintered samples have full density and homogeneous compositions. The Seebeck coefficient, electrical resistivity, and thermal conductivity were measured over the temperature range of 300 K to 950 K. All the sintered samples exhibit a negative Seebeck coefficient. The magnitude of the Seebeck coefficient and the electrical resistivity decrease systematically with increasing Gd content. The thermal conductivity of all the sintered samples is less than 1.9 W K−1 m−1. The highest figure of merit ZT of 0.51 was found in NdGd1.02S3 at 950 K.  相似文献   

16.
A new fabrication technique to prepare ultrathin barrier layers for nanoscale Cu wires was proposed in our previous studies. Ti-rich layers formed at Cu(Ti)/dielectric layer interfaces consisted of crystalline TiC or TiSi and amorphous Ti oxides. The primary control factor for the Ti-rich interface layer composition was C concentration in the dielectric layers rather than the formation enthalpy of the Ti compounds. To investigate Ti-rich interface layer growth in Cu(Ti)/dielectric layer samples annealed in ultrahigh vacuum, Rutherford backscattering spectrometry (RBS) was employed in the present study. Ti peaks were obtained only at the interfaces for all samples. Molar amounts of Ti atoms segregated to the interfaces (n) were estimated from Ti peak areas. Log n values were proportional to log t values. Slopes were similar for all samples, suggesting similar growth mechanisms. The activation energy (E) for Ti atoms reacting with the dielectric layers containing carbon (except SiO2) tended to decrease with decreasing C concentration (decreasing k), while those for the SiO2 layers were much higher. Reaction rate coefficients [Z · exp(−E/RT)] were insensitive to C concentration in the dielectric layers. These factors lead to the conclusion that growth of the Ti-rich interface layers is controlled by chemical reactions, represented by the Z and E values, of the Ti atoms with the dielectric layers, although there are a few diffusion processes possible.  相似文献   

17.
Mg2Sn compounds were prepared by the modified vertical Bridgman method, and were doped with Bi and Ag to obtain n- and p-type materials, respectively. Excess Mg was also added to some of the ingots to compensate for the loss of Mg during the preparation process. The Mg2Sn samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM), and their power factors were calculated from the Seebeck coefficient and electrical conductivity, measured from 80 K to 700 K. The sample prepared with 4% excess Mg, which contains a small amount of Mg2Sn + Mg eutectic phase, had the highest power factor of 12 × 10−3 W m−1 K−2 at 115 K, while the sample doped with 2% Ag, in which a small amount of eutectics also exists, has a power factor of 4 × 10−3 W m−1 K−2 at 420 K.  相似文献   

18.
Mainly driven by space applications, mercury cadmium telluride (MCT) focal-plane arrays (FPAs) have been successfully developed for very long wavelengths (λ CO > 14 μm at 55 K). For this purpose, the standard n-on-p technology based on MCT grown by liquid-phase epitaxy (LPE) and involving vacancy doping has been modified to extrinsic doping by a monovalent acceptor. Due to the planar diode geometry obtained by ion implantation, most of the carrier generation volume is located in the p-type region with a thickness of approximately 8 μm. According to our understanding, the Shockley–Read centers connected with the Hg vacancies are thus significantly reduced. This situation should lead to longer minority-carrier lifetimes and smaller generation rates under equilibrium conditions, therefore yielding lower dark current. We indeed observe a reduction by a factor of approximately 15 by using extrinsic doping. Recent dark current data obtained in the temperature range from 55 K to 85 K on 288 × 384 FPAs with λ CO(60 K) = 12 μm, either intrinsically or extrinsically doped, corroborate this finding. These data, new results on a 112 × 112 pixel demonstrator array with λ CO(55 K) = 14.4 μm, and earlier measurements are compared with Tennant’s Rule 07 established for p-on-n technology.  相似文献   

19.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

20.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号