首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO2 electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 μmol/cm2 h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm×1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V.  相似文献   

2.
A new process for chlorine-free seawater electrolysis is proposed in this study. The first step of the process is separation of Mg2+ and Ca2+ ions from seawater by nanofiltration. Next, the NF permeate is dosed into the electrochemical system. There it is completely split into hydrogen and oxygen gases and NaCl precipitate. The electrochemical system comprises an electrochemical cell operated at elevated temperatures (e.g. ≥ 50 °C) and a settling tank filled with aqueous NaOH solution (20–40 %wt) that operates at lower temperatures (e.g. 20–30 °C). High concentration of hydroxide ions in the electrolyzed solution prevents anodic chlorine evolution, while the accumulated NaCl precipitates in the settling tank. Batch electrolysis tests, performed in NaCl-saturated NaOH solutions, showed absolutely no chlorine formation on Ni200 and Ti/IrO2RuO2TiO2 anodes at [NaOH] > 100 g/kgH2O. Three long-term operations (9, 12 and 30 days) of the electrochemical system showed no Cl2 or chlorate (ClO3?) production on both electrodes operated at current densities of 93–467 mA/cm2. The Ni200 anode was corroded in the continuous operation that resulted in formation of nickel oxide on the anode surface. On the other hand, the system was successfully operated at 467 mA/cm2 with Ti/IrO2RuO2TiO2 electrodes in NaCl-saturated solution of NaOH (30 %wt) for 12 days. During this period no formation of Cl2 and ClO3? has been observed and precipitation of NaCl occurred only in the settling tank. The performance of the system was stable during the operation as indicated by the insignificant fluctuations in the applied cell potentials and measured constant concentrations of NaOH(aq) and NaCl(aq) in the electrolyte solution. During 12 days of operation at ≈ 470 mA/cm2 about 1.2 m3 of H2 and ≈150 g of solid NaCl were produced in the system. Electrical energy demand of the electrolysis cell was 5.6–6.7 kWh/m3H2 for the current density range of 187–467 mA/cm2.  相似文献   

3.
Seawater electrolysis is an attractive way to generate hydrogen energy. However, to commercialize this technology, it has been focused on developing chlorine-less oxygen generating electrodes for decades. Here, different from common ideas of minimizing chlorine formation at the anode, we aimed at reusing the waste chlorine from seawater electrolysis to mitigate nitrogen oxide (NOx) emissions. NOx removal performance of electrolyzed seawater containing chlorine was investigated under 254 nm ultraviolet (UV) irradiation in a semi-continuous bubbling reactor. Comparative parametric experiments were conducted for each factor with and without UV irradiation. Significant contributions of UV irradiation on denitrification performance of chlorine were observed under all investigated conditions. A ten-folder improvement in denitrification efficiency by the UV irradiated electrolyzed seawater was achieved under optimal conditions. Possible free radicals’ reaction mechanisms were discussed preliminarily. Results reveal that UV irradiated electrolyzed seawater is a promising way to reuse electrolyzed chlorine and mitigate acid gas emissions.  相似文献   

4.
In this paper, we present the experimental performance evaluations of a newly developed photoelectrochemical (PEC) reactor for the production of hydrogen under no-light and concentrated solar radiation conditions. With a newly developed experimental setup, the solar light is concentrated about ten times, and the spectrum is divided using cold mirrors for better sunlight utilization. The photoelectrochemical reactor is examined at different applied potentials and the hydrogen production quantities are measured. Copper oxide, which is used as a light-sensitive material, is electrochemically coated on the cathode metal plate to increase the rate of hydrogen evolution under illumination. The present experiments are conducted to investigate the variation of reactor performance with intensified light conditions and the obtained results are compared with the dark conditions. The results of this study reveal that the hydrogen evolution rate was 41.34 mg/h for concentrated light measurement and 34.73 mg/h for no-light measurements at 2.5 V applied potential. The corresponding photocurrent generated under concentrated light at 2.5 V is found to be 0.63 mA/cm2. Under the concentrated sunlight, the hydrogen production rates increase considerably which is led by the positive effect of the photocurrent contribution.  相似文献   

5.
In this study, we conceptually develop and thermodynamically analyze a new continuous-type hybrid system for hydrogen production which photoelectrochemically splits water and performs chloralkali electrolysis. The system has a potential to produce hydrogen efficiently, at low cost, and in an environmentally benign way by maximizing the utilized solar spectrum and converting the byproducts into useful industrial commodities. Furthermore, by using electrodes as electron donors to drive photochemical hydrogen production, the hybrid system minimizes potential pollutant emissions. The products of the hybrid system are hydrogen, chlorine and sodium hydroxide, all of which are desired industrial commodities. The system production yield and efficiencies are investigated based on an operation temperature range of 20 °C–80 °C. A maximum energy efficiency of 42% is achieved between the temperatures of 40 °C and 50 °C.  相似文献   

6.
We have been developing a hydrogen production module with a Pd-based membrane on catalyst (MOC) from natural gas. The MOC module is expected to be more compact and cheaper than the conventional hydrogen production module. To evaluate the hydrogen production performance of the MOC module and to clear the factor that dominates the effective hydrogen production, we compared the reforming performance of the catalytic support without hydrogen permeable membrane and the MOC module at various reaction conditions. As a result, it was cleared that hydrogen permeation through the membrane improves the methane conversion drastically in the MOC module by comparing with the support only module and changing the experimental conditions.  相似文献   

7.
In this study, the hydrogen production performance of a reactor assisted by a solar pond by photoelectrochemical method is examined conceptually. The main components of the new integrated system are a solar pond, a photovoltaic panel (PV) and a hybrid chlor-alkali reactor which consists of a semiconductor anot, photocathode and cation exchange membrane. The proposed system produces hydrogen via water splitting reaction and also yields the by products namely chlorine and sodium hydroxide while consumes saturated NaCl solution and pure water. In order to increase the efficiency of the reactor, the saturated hot NaCl solution at the heat storage zone (HSZ) of the solar pond is transferred to the anot section and the heated pure water by heat exchanger in the HSZ is transferred to cathode section. The photoelectrode releases electrons for hydrogen production with diminishing the power requirement from the PV panel that is used as a source of electrical energy for the electrolysis. The results confirm that the thermal performance of the solar pond plays a key role on the hydrogen production efficiency of the reactor.  相似文献   

8.
Last years hydrogen as energy carrier becomes one of the best solutions of energy and ecological problems. Intensive development of fuel cells, especially based on proton exchange membrane (PEM), where pure hydrogen is needed, stimulates electrolyzers development for the future application in hydrogen energy and technology. From point of view of the authors PEM electrolysis is very perspective for this goal. Advantages and possible fields of applications of this type of electrolyzers in comparison with another one are reviewed. Some results achieved up to now in PEM electrolysis, including last achievement of the authors, are summarized.  相似文献   

9.
Hydrogen is considered today a promising environmental friendly energy carrier for the next future, since it produces no air pollutants or greenhouse gases when it burns in air, and it possesses high energy capacity. In the last decades great attention has been devoted to hydrogen production from water splitting by photocatalysis. This technology appears very attractive thanks to the possibility to work under mild conditions producing no harmful by-products with the possibility to use renewable solar energy. Besides, it can be combined with the technology of membrane separations making the so-called photocatalytic membrane reactors (PMRs) where the chemical reaction, the recovery of the photocatalyst and the separation of products and/or intermediates simultaneously occur. In this work the basic principles of photocatalytic hydrogen generation from water splitting are reported, giving particular attention on the use of modified photocatalysts able to work under visible light irradiation. Several devices to achieve the photocatalytic hydrogen generation are presented focusing on the possibility to obtain pure hydrogen employing membrane systems and visible light irradiation. Although many efforts are still necessary to improve the performance of the process, membrane photoreactors seem to be promising for hydrogen production by overall water splitting in a cost-effective and environmentally sustainable way.  相似文献   

10.
Transient mass transfer processes of hydrogen permeating through a Pd membrane are modeled to aid in predicting the hydrogen transport behavior. The model is established in terms of the quasi-steady time and the steady permeation rate. Meanwhile, four important parameters are considered; they are the permeation lag time, the initial permeation rate, the concave up period and the concave down period. A unit step function is embedded in the model to account for the effect of the hydrogen permeation lag at a lower pressure difference. Corresponding to the lower, the moderate and the higher pressure differences (i.e. 3, 5 and 8 atm), though the hydrogen permeation undergoes a three-stage, a two-stage and a one-stage processes, respectively, these processes can be predicted well by an arc tangential function. By introducing an adjusting parameter in the arc tangential function, there exists an optimal value of the adjusting parameter when the pressure difference is lower. In regard to the moderate and higher pressure differences, the predictions agree with experiments well if the adjusting parameter is sufficiently large. Physically, the unit step function is used to account for the controlling mechanisms of hydrogen diffusion toward the membrane and the spillover of the hydrogen across the membrane. The initial jump parameter represents the rapid response of the initial hydrogen permeation. The adjusting parameter can be used to describe the relative importance of the concave up and the concave down periods.  相似文献   

11.
PdCu membranes prepared by sequential electroless plating were integrated into a hydrogen production and purification process. Hydrogen was produced from methane through catalytic partial oxidation and wet catalytic partial oxidation with Ni-based catalysts. Membrane permeance was measured with thermal cycles in an inert and hydrogen atmosphere at 673 and 773 K. Permeability was 1.98·10−3 mol/(smPa0.5) at 673 K and 2.62·10−3 mol/(smPa0.5) at 773 K. The optimum sweep gas flow required in the membrane module when operating with hydrogen-containing mixtures was selected. Peak hydrogen recovery was obtained using 15–20% of the feed to the module as sweep gas flow. Membranes were then placed downstream of the hydrogen production reactor. The CO and H2O percentages fed to the membrane module did not have a major impact on membrane behavior. Around 60–67% of the hydrogen fed to the membrane module was separated, regardless of its composition.  相似文献   

12.
Proton Exchange Membrane (PEM) Electrolysers (ELSs) are considered as pollution-free with enhanced efficiency technology. Hydrogen can be easily produced from different resources like biomass, water electrolysis, natural gas, propane, and methanol. Hydrogen generation from water electrolysis, which is the splitting of water molecules into hydrogen and oxygen using electricity, can be beneficial when used in combination with variable Renewable Energy (RE) technologies such as solar and wind. When the electricity used for water electrolysis is produced by a variable RE source, the hydrogen stores the unused energy for a later use and can be considered as a renewable fuel and energy resource for the transport and energy sectors.This paper aims to propose a novel graphical model design for the PEM-ELS for hydrogen production based on the electrochemical, thermodynamical and thermal equations. The model under study is experimentally validated using a small-scale laboratory electrolyser. Simulation results, using Matlab-Simulink?, show an adequate parameter agreement with those found experimentally. Therefore, the impact of the different parameters on the electrolyser dynamic performance is introduced and the relevant analytical-experimental comparison is shown. The temperature effect on the PEM-ELS dynamic behaviour is also discussed.  相似文献   

13.
The increased demand for a reliable and sustainable renewable energy source encourages the hydrogen-based economy. For the same, membrane separation approaches were reviewed as an advantageous process over contemporary techniques due to the environmentally friendly nature, economically viable pathway, and easily adaptable technology. A comprehensive assessment for the advancements in the type of membranes namely, polymeric and mixed matrix membranes (MMMs) has been delineated in the present article with the fabrication methodologies and associated mechanism for hydrogen separation. In hydrogen separation mechanism of the membrane, depends on the morphology of the membrane (dense or porous). The existence of pores in membranes offers various gas transport mechanisms such as Knudsen diffusion, surface diffusion, capillary condensation, molecular sieving mechanisms were observed, depending on the pore size of membranes and in dense membrane gas transport through the solution-diffusion mechanism. In polymer membrane, hydrogen separation occurs mainly due to solubility and diffusivity of gases. The hydrogen separation mechanism in MMMs is very complex due to the combining effect of polymer and inorganic fillers. So, the gas separation performance of MMMs was evaluated using the modified Maxwell model. Moreover, adequate polymeric material and inorganic fillers have been summarised for MMMs synthesis and highlighting the mechanism for gas transport phenomena in the process. Several types of materials implemented with polymeric matrix examined in the literature, amongst these functionally aligned CNTs with Pd-nanoparticles dispersed in polymer matrix were observed to reveal the best outcome for the hydrogen separation membrane due to the uniform distribution of inorganic material in the matrix. Henceforth, the agglomeration gets reduced promoting hydrogen separation.  相似文献   

14.
Herein, a methane steam reforming (MSR) reaction was carried out using a Pd composite membrane reactor packed with a commercial Ru/Al2O3 catalyst under mild operating conditions, to produce hydrogen with CO2 capture. The Pd composite membrane was fabricated on a tubular stainless steel support by the electroless plating (ELP) method. The membrane exhibited a hydrogen permeance of 2.26 × 10?3 mol m2 s?1 Pa?0.5, H2/N2 selectivity of 145 at 773 K, and pressure difference of 20.3 kPa. The MSR reaction, which was carried out at steam to carbon ratio (S/C) = 3.0, gas hourly space velocity (GHSV) = 1700 h?1, and 773 K, showed that methane conversion increased with the pressure difference and reached 79.5% at ΔP = 506 kPa. This value was ~1.9 time higher than the equilibrium value at 773 K and 101 kPa. Comparing with the previous studies which introduced sweeping gas for low hydrogen partial pressure in the permeate stream, very high pressure difference (2500–2900 kPa) for increase of hydrogen recovery and very low GHSV (<150) for increase hydraulic retention time (HRT), our result was worthy of notice. The gas composition monitored during the long-term stability test showed that the permeate side was composed of 97.8 vol% H2, and the retentate side contained 67.8 vol% CO2 with 22.2 vol% CH4. When energy was recovered by CH4 combustion in the retentate streams, pre-combustion carbon capture was accomplished using the Pd-based composite membrane reactor.  相似文献   

15.
Hydrogen production via steam methane reforming with in situ hydrogen separation in fluidized bed membrane reactors was simulated with Aspen Plus. The fluidized bed membrane reactor was divided into several successive steam methane sub-reformers and membrane sub-separators. The Gibbs minimum free energy sub-model in Aspen Plus was employed to simulate the steam methane reforming process in the sub-reformers. A FORTRAN sub-routine was integrated into Aspen Plus to simulate hydrogen permeation through membranes in the sub-separator based on Sieverts' law. Model predictions show satisfactory agreement with experimental data in the literature. The influences of reactor pressure, temperature, steam-to-carbon ratio, and permeate side hydrogen partial pressure on reactor performances were investigated with the model. Extracting hydrogen in situ is shown to shift the equilibrium of steam methane reactions forward, removing the thermodynamic bottleneck, and improving hydrogen yield while neutralizing, or even reversing, the adverse effect of pressure.  相似文献   

16.
A conceptual design and economic analysis are presented for a hydrogen production plant based on the use of thermochemical water splitting combined with a solar central receiver. The reference design consists of a Hybrid Sulfur thermochemical process coupled to a solar plant, based on the particle receiver concept, for a yearly average hydrogen production rate of 100 tons per day. The Hybrid Sulfur plant has been designed on the basis of results obtained from a new flowsheet ASPEN Plus® simulation, carrying out specific evaluations for the Sulfur dioxide Depolarized Electrolyzer, being developed and constructed at Savannah River National Laboratory, and for the sulfuric acid decomposition bayonet-based reactor, investigated at Sandia National Laboratory. Solar hydrogen production costs have been estimated considering two different scenarios in the medium to long term period, assuming the financing and economic guidelines from DOE’s H2A model and performing ad hoc detailed evaluations for unconventional equipment. A minimum hydrogen production specific cost of 3.19 $/kg (2005 US $) has been assessed for the long term period. The costs, so obtained, are strongly affected by some quantities, parameters and assumptions, influence of which has also been investigated and discussed.  相似文献   

17.
In this work, the performance of an industrial dense PdAg membrane reformer for hydrogen production with methane mixed reforming reaction was evaluated. The rate parameters of mixed reforming reaction on a Ni based catalyst optimized by using the experimental results. One-dimensional models have been considered to model the steam reforming industrial membrane reformer (SRIMR) and mixed reforming industrial membrane reformer (MRIMR). The models are validated by experimental data.The proficiency of MRIMR and SRIMR at similar conditions used as a basis of comparison in terms of temperature, methane conversion, hydrogen yield, syngas production rate and CO2 flow rate. Results revealed that the methane conversion, hydrogen yield and syngas production rate in MRIMR is considerably higher than SRIMR. Furthermore, the operation temperature of MRIMR could be 195 °C lower than that for SRIMR. This would contribute to a major decrease in process costs as well as a reduction in catalyst sintering. On the other hand, although MRIMR consumes CO2, the exited CO2 flow rate at the SRIMR is three times more than that of at the MRIMR, which is a main advantage of MRIMR from the environmental issues point of view.  相似文献   

18.
Energy storage is a key technology for establishing a stand-alone renewable energy system. Current energy-storage technologies are, however, not suitable for such an energy system because the technologies are cost ineffective and achieve low energy-conversion efficiency. The most realistic and expected technology is hydrogen generation from water splitting by an electrochemical cell directly connected with photovoltaic cell. In this study, a simple concept is proposed for generating hydrogen from water splitting by using a direct-electrically-connected polymer electrolyte electrochemical cell and a separately-located concentrated photovoltaic cell, named a “concentrated photovoltaic electrochemical cell (CPEC)”. The CPEC operates stably and achieves relatively high-energy conversion efficiency from light to hydrogen of over 12%. The conditions are comparison with those of the electrochemical cell connected with a polycrystalline Si solar cell.  相似文献   

19.
The effect of temperature, initial pH and glucose concentration on fermentative hydrogen production by mixed cultures was investigated in batch tests, and the optimization of fermentative hydrogen production process was conducted by response surface methodology with a central composite design. Experimental results showed that temperatures, initial pH and glucose concentrations had impact on fermentative hydrogen production individually and interactively. The maximum hydrogen yield of 289.8 mL/g glucose was estimated at the temperature of 38.6 °C, the initial pH of 7.2 and the glucose concentration of 23.9 g/L. The maximum hydrogen production rate of 28.2 mL/h was estimated at the temperature of 37.8 °C, the initial pH of 7.2 and the glucose concentration of 27.6 g/L. The maximum substrate degradation efficiency of 96.9% was estimated at the temperature of 39.3 °C, the initial pH of 7.0 and the glucose concentration of 26.8 g/L. Response surface methodology was a better method to optimize the fermentative hydrogen production process. Modified logistic model could describe the progress of cumulative hydrogen production in the batch tests of this study successfully.  相似文献   

20.
The present work reports the photoelectrochemical characterization of a dye-sensitized solar cell (DSC) to assist water split in a photoelectrochemical (PEC) cell. Performance parameters were extracted from standard current–voltage characteristic (I–V) and the charge transfer phenomena occurring at different interfaces of the DSC were evaluated by electrochemical impedance spectroscopy (EIS). The DSC comprised the N719 dye and a robust electrolyte (1-propyl-3-methylimidazolium iodide in guanidinium thiocyanate additive). At 1 sun illumination the DSC yielded a short-circuit photocurrent density of 14.9 mA cm−2, an open-circuit voltage of 0.797 V, a fill factor of 0.712 and an overall efficiency of 8.5%. Different PEC systems based on silicon-doped and undoped hematite photoelectrodes were considered. The required additional anodic bias necessary for actual water cleavage was supplied by two DSCs in series operating just under open-circuit voltage (1.56 V), allowing a conversion efficiency of about 1.12% for the silicon-doped hematite deposited by APCVD, 0.51% for the silicon-doped prepared by USP and 0.12% for the undoped hematite sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号