首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photodegradation of a typical textile blue azo dye, followed by UV–VIS spectra analysis, has been carried out successfully under white light illumination on TiO2/CdO–ZnO nanoporous coupled thin films. A relatively fast degradation occurs in dye solutions with concentrations of 100 mg/l (pH=3), at temperatures of 85°C, and with the aid of 400 mg/l hydrogen peroxide. Photodegradation also occurs on nanoporous TiO2 films but with significant lower efficiency than on TiO2/CdO–ZnO coupled nanoporous films. Dye photodegradation does not occur on TiO2/CdO or TiO2/ZnO nanoporous films, suggesting that both CdO and ZnO components are required on the sensitization of TiO2 nanoporous films. A combined effect of new sensitizing interband states (response to white illumination) and/or rectification phenomena (improved charge separation) may be responsible of the higher photocatalytic activity of the TiO2/CdO–ZnO nanoporous films. Similarly, the alternative route for visible degradation, the photosensitized degradation mechanism, could also benefit from the coupled nanoporous films due to a higher driving force for electron injection (dye oxidation).  相似文献   

2.
Performance improvement of hybrid solar cells (HSC) applying five different thin film semiconductor oxides has been observed during long-time irradiation in ambient atmosphere. This behavior shows a direct relation between HSC and oxygen content from the environment. Photovoltaic devices were prepared as bi-layers of thin film semiconducting oxides (TiO2, Nb2O5, ZnO, CeO2–TiO2 and CeO2) and the polymer MEH-PPV, with a final device configuration of ITO/Oxidethin film/MEH-PPV/Ag. The oxides were prepared as thin transparent films from sol–gel solutions. The photovoltaic cells were studied in ambient atmosphere by recording the initial values of open circuit voltage (Voc) and current density (Isc). Solar decay curves presented as the measurement of the short circuit current as a function of time, IV curves and photophysical analyses were also carried out for each type of device. Solar cells with TiO2 thin films showed the best performance with maximum Voc as high as −0.74 V and Isc of 0.4 mA/cm2. Solar decay analyses showed that the devices require a stabilization period of several hours in order to reach maximum performance. In the case of TiO2, Nb2O5 and CeO2–TiO2, the maximum current density was observed after 15 h; for CeO2, the maximum performance was observed after 30 h. The only exception was observed with devices applying ZnO in which the current density decreased drastically and degraded the polymer in just a couple of hours.  相似文献   

3.
In order to sensitize TiO2 in visible light and to reduce photo-induced charge recombination, the multilayer films of Indium-Tin Oxide (ITO)/V-doped TiO2 were synthesized by radio-frequency magnetron sputtering. V-doped TiO2 thin films showed red shift in TiO2 absorption edge with increasing dopant concentration and, most importantly, the dopant energy levels are formed in the TiO2 band gap due to V5+/V4+ ions as confirmed by UV-Visible and XPS spectra. Multilayer films with different numbers of ITO/V-doped TiO2 (6 at.%) bilayers (namely, 2-, 3-, 4-, 5-, 6- and 7-bilayers) were deposited, in order to reduce the charge recombination rate, by keeping the total thickness of TiO2 constant in each multilayer film. In multilayer films, when exposed to visible light the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/V-doped TiO2. The measured enhanced photocurrent is attributed to: 1) ability of V-doped TiO2 to absorb visible light, 2) number of space-charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space-charge layer by decreasing the V-doped TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by the photocurrent kinetic curves. The superior photocatalytic efficiency of the 6-bilayers film is also reflected in hydrogen production rate through water-splitting: we obtained indeed 31.2 μmol/h of H2 production rate.  相似文献   

4.
Mesoporous ZrO2-modified coupled ZnO/TiO2 nanocomposites were prepared by a surfactant assisted sol–gel method. The photocatalytic performance of these materials was investigated for H2 evolution without noble metal co-catalyst using aqueous methanol media under AM1.5 simulated light. The H2 evolution was compared with coupled ZnO/TiO2, TiO2, ZnO and Degussa P25. The ZrO2-modified nanocomposites exhibited higher H2 generation, specifically 0.5 wt.% ZrO2 loading produced 30.78 mmol H2 g−1 compared to 3.55 mmol H2 g−1 obtained with coupled ZnO/TiO2. A multiple absorbance thresholds at 435 nm and 417 nm were observed with 0.5 wt.% ZrO2 loading, corresponding to 2.85 eV and 2.97 eV band gap energies. The high surface area, large pore volume, uniform crystallite sizes and enhanced light harvesting observed in ZrO2-modified nanocomposites were contributing factors for effective charge separation and higher H2 production. The possible mechanism of H2 generation from aqueous methanol solution over ZrO2-modified nanocomposite is presented.  相似文献   

5.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

6.
Cr-doped-TiO2 thin films, with three different Cr concentrations (2, 5.5, and 9 at.%), have been synthesized by radio-frequency magnetron sputtering in order to sensitize TiO2 in visible light. UV–visible spectra showed that maximum narrowing (2.1 eV) of the TiO2 band gap is obtained for the highest Cr concentration. However, negligible photocurrent was measured with Indium Tin Oxide (ITO)/Cr-doped-TiO2 (9 at.%) single bilayer sample due to the increased recombination rate of the photo-generated charges on the defects associated to the Cr3+ ions. To lower the charge recombination rate in the Cr-doped-TiO2, multilayer films with different numbers of ITO/Cr-doped-TiO2 (9 at.%) bilayers (namely, 3-, 4-, 5-, 6- and 7-bilayers) were deposited by keeping the total thickness of TiO2 constant in each multilayer film. When the multilayer films were exposed to visible light, we observed that the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/Cr-doped-TiO2. The enhanced photocurrent is attributed to: 1) higher absorption of visible light by Cr-doped-TiO2, 2) number of space charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space charge layer by decreasing the Cr-doped-TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by studying the photocurrent kinetic curve. The superior photocatalytic efficiency of the 6-bilayers film implies higher hydrogen production rate through water-splitting: we obtained indeed 24.4 μmol/h of H2 production rate, a value about two times higher than that of pure TiO2 (12.5 μmol/h).  相似文献   

7.
TiO2 thin films containing different concentrations of Ag nanoparticles have been synthesized by sol-gel method. According to UV–visible spectra, presence of an intense surface plasmon resonance peak at 490 nm of wavelength indicated formation of silver nanoparticles in the TiO2 films. Based on atomic force microscopy (AFM) analysis, the surface roughness and the effective surface ratio increased by increasing the Ag mol%. Moreover, scanning electron microscopy (SEM) images showed formation of Ag nanoparticles on the surface for the samples containing high Ag concentration. X-ray diffraction (XRD) patterns revealed that the size of Ag nanocrystals increased by increasing the Ag content in the films while the nanocrystalline size of TiO2 reduced in the presence of silver nanoparticles. Based on x-ray photoelectron spectroscopy (XPS) data, a stoichiometric chemical composition was detected for TiO2 while, Ag presented in a combination a metal/oxide states on the surface. Studying photoresponse of the samples showed that the highest photocurrent was obtained for the sample containing 1 mol% Ag. By measuring the photovoltage versus time, it was found that addition of silver nanoparticles to the TiO2 layer resulted in reduction of the transient time of the photogenerated carriers in the samples. Impedance spectroscopy determined a slight decrease in charge transfer resistance by addition of Ag to the films. Moreover, measuring the amount of hydrogen produced during water splitting reactions verified that the highest quantum yield of 9.6% was obtained for the sample with 1 mol% Ag.  相似文献   

8.
Layered WO3/TiO2 nanostructures, fabricated by magnetron sputtering, demonstrate significantly enhanced photocurrent densities compared to individual TiO2 and WO3 layers. First, a large quantity of compositions having different microstructures and thicknesses were fabricated by a combinatorial approach: diverse WO3 microstructures were obtained by adjusting sputtering pressures and depositing the films in form of wedges; later layers of TiO2 nanocolumns were fabricated thereon by the oblique angle deposition. The obtained photocurrent densities of individual WO3 and TiO2 films show thickness and microstructure dependence. Among individual WO3 layers, porous films exhibit increased photocurrent densities as compared to the dense layer. TiO2 nanocolumns show length-dependent characteristics, where the photocurrent increases with increasing film thickness. However, by combining a WO3-wedge type layer with a layer of TiO2 nanocolumns, PEC properties strikingly improve, by about two orders of magnitude as compared to individual WO3 layers. The highest photocurrent that is measured in the combinatorial library of porous WO3/TiO2 films is as high as 0.11 mA/cm2. Efficient charge-separation and charge carrier transfer processes increase the photoconversion efficiency for such films.  相似文献   

9.
The photocatalytic activity of commercial ZnO powder has been investigated and compared with that of Degussa P25 TiO2. Laboratory experiments with acid brown 14 as the model pollutant have been carried out to evaluate the performance of both ZnO and TiO2 catalysts. Solar light was used as the energy source for the photocatalytic experiments. These catalysts were examined for surface area, particle size and crystallinity. The effect of initial dye concentration, catalyst loading, irradiation time, pH, adsorption of acid brown 14 on ZnO and TiO2, intensity of light and comparison of photocatalytic activity with different commercial catalysts were studied. The progress of photocatalytic degradation of the acid brown 14 has been observed by monitoring the change in substrate concentration of the model compound employing HPLC and measuring the absorbance in UV–Visible spectrophotometer for decolourisation. The photodegradation rate was determined for each experiment and the highest values were observed for ZnO suggesting that it absorbs large fraction of the solar spectrum and absorption of more light quanta than TiO2. The complete mineralisation was confirmed by total organic carbon (TOC) analysis, COD measurement and estimation of the formation of inorganic ions such as NH4+, NO3, Cl and SO42−.  相似文献   

10.
TiO2/ZnO/Eosin Y structure films were prepared by a one-step cathodic electrodeposition method and used as a photoanode in a dye-sensitized solar cell (DSSC). Using this TiO2/ZnO/Eosin Y electrode in DSSC, the degradation of the cell with time was reduced and ISC, VOC and fill factor values were increased. The use of a thin ZnO layer, permitted the formation of an energy barrier at the electrode/electrolyte interface, thus reducing recombination rate and improving cell performance. In addition, the adsorbed dye molecules prepared by one-step cathodic electrodeposition with ZnO were very stable compared with that prepared by conventional immersing method, as evidenced by UV/vis absorption spectroscopy measurements.  相似文献   

11.
TiO2 thin films were prepared on electrochemically etched porous Si by anodic oxidative hydrolysis of TiCl3 for the purpose of solar cell application. We compared electrochemical and photoelectrochemical properties of the TiO2-deposited porous Si electrodes (TiO2/porous Si) with those of a porous Si electrode. The TiO2/porous Si showed prolonged stability of photoluminescence and enhancements of photovoltage and photocurrent by 0.13 V and 67% increase, respectively, in comparison with porous Si due to the reduction of surface traps for charge carriers in the presence of TiO2 thin layer. Li+ and Na+ ions exhibited intercalation and deintercalation through the electrodeposited TiO2 film.  相似文献   

12.
Zinc oxide (ZnO) thin films have been successfully grown by metal organic chemical vapor deposition (MOCVD) technique using deuterium water (D2O) and water (H2O) mixtures as oxidants for diethylzinc (DEZ). B2H6 was also employed as a dopant gas. It was found that the crystal orientation of ZnO films strongly depends on D2O/H2O ratio. As a result, the surface morphology of ZnO changed from textured surface morphology to smooth surface morphology with increase in the ratio of D2O/H2O. Moreover, it was also observed that the carrier concentration of ZnO films did not change with the ratio of D2O/H2O, while the mobility of these films was strongly dependent on the D2O/H2O ratio. Without D2O addition, the resistivity of films had its lowest value and the minimum sheet resistance was 10 Ω/square. All films showed transmittance higher than 80% in the visible region. Moreover, the haze values of these films could be controlled by the ratio of D2O/H2O. These results indicate that the crystal orientation and surface morphology of the low resistivity ZnO films can be modified by using a mixture of D2O and H2O without changing the deposition temperature. Thus, the obtained ZnO films are promising for use as a front TCO layer in Si-based thin film solar cells.  相似文献   

13.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

14.
Novel nanocrystalline TiO2 films with the textural channels are obtained for dye-sensitized solar cells (DSSCs). The textural channels consisting of the cracks on the surface and the nanopores with average diameter of about 41 nm are produced by packaging ZnO nanowires with diameter of 30–50 nm into TiO2 films and subsequently etching ZnO nanowires by hydrochloric acid. The performances of DSSCs based on novel TiO2 films (with the textural channels) and traditional TiO2 films (without the textural channels) are investigated, respectively. When two kinds of typical quasi-solid-state electrolytes and one kind of solid-state electrolyte are used, the energy conversion efficiencies of DSSCs from novel TiO2 films are improved by 20–30% compared to that from traditional TiO2 films. The reasons for the great improvement are investigated chiefly by UV–vis absorption spectra, field emission-scanning electron microscope (FE-SEM) and electrochemical impedance spectroscopy (EIS) technique. The results show that the introduction of the textural channels facilitates better penetration of quasi-solid/solid-state electrolytes into the nanopores of novel TiO2 films and thus results in better interfacial/electrical contact and faster interfacial reaction.  相似文献   

15.
An efficient hierarchical structure, nano-branch containing anatase TiO2 nanofibers and rutile nanorods, was prepared via the combination of the electrospinning and hydrothermal processes. This novel configuration of TiO2 multiphase possessed higher surface area, roughness, and fill factors compared with each single phase component prepared in the same condition, which significantly enhanced its light absorption. Our experimental results showed that within the interface of multiphase TiO2, the heterojunction promoted the charge separation and improved the charge transfer rate, leading to higher efficiency for photoelectrochemical water splitting. The photocurrent density of the nano-branched TiO2 electrode could reach 0.95 mA/cm2, which was almost twice as large as that of the pristine TiO2 nanorod. Our work provides a simple and feasible routine to synthesize complex TiO2 nanoarchitectures, which lays a foundation for improving energy storage and conversion efficiency of TiO2-based photoelectrodes.  相似文献   

16.
TiO2-overcoated SnO2:F transparent conductive oxide films were prepared by atmospheric pressure chemical vapor deposition (APCVD) and an effect of TiO2 layer thickness on a-Si solar cell properties was investigated. The optical properties and the structure of the TiO2 films were evaluated by spectroscopic ellipsometry and X-ray difractometry. a-Si thin film solar cells were fabricated on the SnO2:F films over-coated with TiO2 films of various thicknesses (1.0, 1.5 and 2.0 nm) and IV characteristics of these cells were measured under 1 sun (100 mW/cm2 AM-1.5) illumination. It was found that the TiO2 film deposited by APCVD has a refractive index of 2.4 at 550 nm and anatase crystal structure. The conversion efficiency of the a-Si solar cell fabricated on the 2.0 nm TiO2-overcoated SnO2:F film increased by 3%, which is mainly attributed to an increase in open circuit voltage (Voc) of 30 mV.  相似文献   

17.
Visible-light-driven nitrogen-doped TiO2 was synthesized using a novel nitrogen-ion donor of hydrazine hydrate. Low-concentration (0.2 at%) nitrogen species and Ti3+ were detected in the TiO2-based photocatalyst by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectroscopy. The trace amount of Ti–N would contribute to the minor band-gap narrowing of about 0.02 eV. Those nitrogen-containing species, especially the NO22− species, form surface states, which make the catalysts possible to degrade 4-chlorophenol (4-CP) under visible irradiation (λ>400 nm). Moreover, Ti3+ species induce oxygen vacancy states between the valence and the conduction bands, which would also contribute to the visible response. The photocatalytic activity of the nitrogen-doped TiO2 catalyst was thought to be the synergistic effect of nitrogen and Ti3+ species. The catalysts showed higher photocatalytic activity for degradation of 4-CP than pure TiO2 under not only visible but also UV irradiation. The visible response and the higher UV activity of the nitrogen-doped TiO2 make it possible to utilize solar energy efficiently to execute photocatalysis processes.  相似文献   

18.
The fabrication and characterization of CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure that has potential applications in photocatalytic water splitting and toxic pollutants degradation are investigated. CdSe(top)/CdS(under) double-layer is conformally deposited onto TiO2 nanotubes by successive ionic layer adsorption and reaction (SILAR) and electrochemical atomic layer deposition (ECALD), respectively, for the CdS under layer and the CdSe top layer. Such double sensitized TiO2 nanotubular photoelectrode exhibits significant enhancements in photoconversion efficiency, visible light response, and efficient hydrogen generation. The detailed synthesis process and the surface morphology, phase structure, elemental analysis, and photoelectrochemical properties of the resulting films with the CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure are discussed. The photoconversion efficiency of 9.47% and hydrogen generation rate of 10.24 ml h−1 cm−2 were observed. Both values are a 7-fold enhancement compared with that of the pure TiO2 nanotube. The as-prepared photoelectrode presents potential application for industrialized photocatalytic hydrogen generation in the future.  相似文献   

19.
Cr- or Fe-ion-doped TiO2 thin films have been synthesized by radio-frequency magnetron sputtering and a sol–gel method to study hydrogen generation by photocatalytic water-splitting under visible light irradiation. The doping method, dopant concentration, charge transfer from metal dopants to TiO2, and type of dopants used for modification of TiO2 were investigated for their ability to enhance photocatalytic activity. UV–Visible spectra show that the metal-doped-TiO2 obtained by sputtering is much more efficient than that obtained by the sol–gel technique at inducing a red shift of the absorption edge in the visible light range. Low concentration metal ion doping must be done near the conducting indium tin oxide (ITO) – TiO2 interface to avoid the formation of recombination centers for photo-generated electron–hole pairs. H2 production rate (μmol/h) is higher for Fe-doped TiO2 (15.5 μmol/h) than for Cr-doped TiO2 (5.3 μmol/h) due to the ability of Fe ions to trap both electrons and holes, thus avoiding recombination, while Cr can only trap one type of charge carrier. A constant H2 generation rate is obtained for long periods of time by all the investigated TiO2 films because of the separate evolution of H2 and O2 gases, thus eliminating the back-reaction effect.  相似文献   

20.
This paper describes the photoelectrochemical studies on nanostructured iron doped titanium dioxide (TiO2) thin films prepared by sol-gel spin coating method. Thin films were characterized by X-ray diffraction, Raman spectroscopy, spectral absorbance, atomic force microscopy and photoelectrochemical (PEC) measurements. XRD study shows that the films were polycrystalline with the photoactive anatase phase of TiO2. Doping of Fe in TiO2 resulted in a shift of absorption edge towards the visible region of solar spectrum. The observed bandgap energy decreased from 3.3 to 2.89 eV on increasing the doping concentration upto 0.2 at.% Fe. 0.2 at.% Fe doped TiO2 exhibited the highest photocurrent density, ∼0.92 mA/cm2 at zero external bias. Flatband potential and donor density determined from the Mott–Schottky plots were found to vary with doping concentration from −0.54 to −0.92 V/SCE and 1.7 × 1019 to 4.3 × 1019 cm−3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号