首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the first rehabilitated passive energy standard office buildings in Europe was extensively monitored over two years to analyse the cooling performance of a ground heat exchanger and mechanical night ventilation together with the summer comfort in the building. To increase the storage mass in the light weight top floor, phase change materials (PCM) were used in the ceiling and wall construction. The earth heat exchanger installed at a low depth of 1.2 m has an excellent electrical cooling coefficient of performance of 18, but with an average cooling power of about 1.5 kW does not contribute significantly to cooling load removal. Mechanical night ventilation with 2 air changes also delivered cold at a good coefficient of performance of 6 with 14 kW maximum power. However, the night air exchange was too low to completely discharge the ceilings, so that the PCM material was not effective in a warm period of several days. In the ground floor offices the heat removal through the floor to ground of 2–3 W m−2 K−1 was in the same order of magnitude than the charging heat flux of the ceilings. The number of hours above 26 °C was about 10% of all office hours. The energy performance of the building is excellent with a total primary energy consumption for heating and electricity of 107–115 kW h m−2 a−1, without computing equipment only 40–45 kW h m−2 a−1.  相似文献   

2.
A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all direct radiation will block up to 77% of the solar energy from entering the greenhouse in summer, reducing the required cooling capacity by about a factor 4. This drastically reduce the need for cooling in the summer and reduce the use of screens or lime coating to reflect or block radiation.All of the direct radiation is concentrated by a factor of 25 on a photovoltaic/thermal (PV/T) module and converted to electrical and thermal (hot water) energy. The PV/T module is kept in position by a tracking system based on two electric motors and steel cables. The energy consumption of the tracking system, ca. 0.51 W m−2, is less than 2% of the generated electric power yield. A peak power of 38 W m−2 electrical output was measured at 792 W m−2 incoming radiation and a peak power of 170 W m−2 thermal output was measured at 630 W m−2 incoming radiation of. Incoming direct radiation resulted in a thermal yield of 56% and an electric yield of 11%: a combined efficiency of 67%. The annual electrical energy production of the prototype system is estimated to be 29 kW h m−2 and the thermal yield at 518 MJ m−2. The collected thermal energy can be stored and used for winter heating. The generated electrical energy can be supplied to the grid, extra cooling with a pad and fan system and/or a desalination system. The obtained results show a promising system for the lighting and temperature control of a greenhouse system and building roofs, providing simultaneous electricity and heat. It is shown that the energy contribution is sufficient for the heating demand of well-isolated greenhouses located in north European countries.  相似文献   

3.
A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L−1 glucose (19 W m−3) by 495% for 50 mg L−1 ceftriaxone sodium + 1000 mg L−1 glucose (113 W m−3), while the maximum power density is 11 W m−3 using 50 mg L−1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.  相似文献   

4.
The effects of heat transfer mechanisms on the charging process in metal hydride reactors are studied under various charging pressures. Three different cylindrical reactors with the same base dimensions are designed and manufactured. The first one is a closed cylinder cooled with natural convection, the fins are manufactured around the second reactor and the third reactor is cooled with water circulating around the reactor. The temperatures of the reactor at several locations are measured during charging with a range of pressure of 1–10 bar. The third reactor shows the lowest temperature increase with the fastest charging time under all charging pressures investigated. The effective heat transfer coefficients of the reactors are also calculated according to the experimental results and they are found to be 5.5 ± 1 W m−2 K−1, 35 ± 2 W m−2 K−1 and 113 ± 1 W m−2 K−1, respectively. The experimental results showed that the charging of hydride reactors is mainly heat transfer dependent and the reactor with better cooling exhibits the fastest charging characteristics.  相似文献   

5.
To investigate the effects of external resistance on the biofilm formation and electricity generation of microbial fuel cells (MFCs), active biomass, the content of extracellular polymeric substances (EPS) and the morphology and structure of the biofilms developed at 10, 50, 250 and 1000 Ω are characterized. It is demonstrated that the structure of biofilm plays a crucial role in the maximum power density and sustainable current generation of MFCs. The results show that the maximum power density of the MFCs increases from 0.93 ± 0.02 W m−2 to 2.61 ± 0.18 W m−2 when the external resistance decreases from 1000 to 50 Ω. However, on further decreasing the external resistance to 10 Ω, the maximum power density decreased to 1.25 ± 0.01 W m−2 because of a less active biomass and higher EPS content in the biofilm. Additionally, the 10 Ω MFC shows a highest maximum sustainable current of 8.49 ± 0.19 A m−2. This result can be attributed to the existence of void spaces beneficial for proton and buffer transport within the anode biofilm, which maintains a suitable microenvironment for electrochemically active microorganisms.  相似文献   

6.
This work aims at understanding the energy loss in the polysilicon deposition reactor during the production of solar grade silicon. The radiative heat transfer between the polysilicon rods and the reactor wall in the so-called Siemens reactor is studied in detail in this paper. First, the most commonly used reactor configuration, 36 rods in three rings, is explained, detailing the particular radiation transfer of each rod toward the wall. Based on this analysis, some proposals for diminishing the energy loss are proposed: enlarge the reactor capacity, improve the properties of the reactor wall and introduce thermal shields. The impact of each proposal on the energy savings is quantified. If the reactor capacity is enlarged from 36 to 60 rods, the energy savings would be around 11 kWh per kg of polysilicon produced (kWh kg−1). Increasing the reflectivity of the wall, the savings would be around 17 kWh kg−1. And finally, the potential for cost reduction because of the introduction of thermal shields would be 20 kWh kg−1.  相似文献   

7.
Scale-up studies of Microbial Fuel Cells are required before practical application comes into sight. We studied an MFC with a surface area of 0.5 m2 and a volume of 5 L. Ferric iron (Fe3+) was used as the electron acceptor to improve cathode performance. MFC performance increased in time as a combined result of microbial growth at the bio-anode, increase in iron concentration from 1 g L−1 to 6 g L−1, and increased activity of the iron oxidizers to regenerate ferric iron. Finally, a power density of 2.0 W m−2 (200 W m−3) was obtained. Analysis of internal resistances showed that anode resistance decreased from 109 to 7 mΩ m2, while cathode resistance decreased from 939 to 85 mΩ m2. The cathode was the main limiting factor, contributing to 58% of the total internal resistance. Maximum energy efficiency of the MFC was 41%.  相似文献   

8.
The relationship between hydrogen generation and the age of culture was investigated under fed-batch growth conditions. The specific growth rate (μe) was determined during the log phase of the growth curve and the μeMax was 0.02643 h−1. Boltzmann's sigmoidal regression model was used to determine the specific rate of hydrogen evolution (μH): the maximum was 0.04440 h−1. At low irradiance (36–75 W m−2), an inverse relationship was found between μH and I; after increasing the irradiance further, μH reached a plateau (0.00916 h−1). The maximum reactor yield of cumulative hydrogen (4.5 l) was obtained at an irradiance of 320 W m−2, but the highest hydrogen evolution rate (17.217 ml h−1) was achieved at 500 W m−2. The light conversion efficiency reached its maximum (6.91%) at the lowest irradiance investigated (36 W m−2); when the irradiance increased further, it decreased progressively down to 0.36%.  相似文献   

9.
The present study proposes a combination of solar-powered components (two heaters, an evaporator, and a steam reformer) with a proton exchange membrane fuel cell to form a powerplant that converts methanol to electricity. The solar radiation heats up the mass flows of methanol-water mixture and air and sustains the endothermic methanol steam reformer at a sufficient reaction temperature (typically between 220 and 300 °C). In order to compare the different types of energy (thermal, chemical, and electrical), an exergetic analysis is applied to the entire system, considering only the useful part of energy that can be converted to work. The effect of the solar radiation intensity and of different operational and geometrical parameters like the total inlet flow rate of methanol-water mixture, the size of the fuel cell, and the cell voltage on the performance of the entire system is investigated. The total exergetic efficiency comparing the electrical power output with the exergy input in form of chemical and solar exergy reaches values of up to 35%, while the exergetic efficiency only accounting for the conversion of chemical fuel to electricity (and neglecting the ‘cost-free’ solar input) is increased up to 59%. At the same time, an electrical power density per irradiated area of more than 920 W m−2 is obtained for a solar heat flux of 1000 W m−2.  相似文献   

10.
Numerical weather prediction (NWP) is generally the most accurate tool for forecasting solar irradiation several hours in advance. This study validates the North American Model (NAM), Global Forecast System (GFS), and European Centre for Medium-Range Weather Forecasts (ECMWF) global horizontal irradiance (GHI) forecasts for the continental United States (CONUS) using SURFRAD ground measurement data. Persistence and clear sky forecasts are also evaluated. For measured clear conditions all NWP models are biased by less than 50 W m−2. For measured cloudy conditions these biases can exceed 200 W m−2 near solar noon. In general, the NWP models (especially GFS and NAM) are biased towards forecasting clear conditions resulting in large, positive biases.Mean bias errors (MBE) are obtained for each NWP model as a function of solar zenith angle and forecast clear sky index, kt, to derive a bias correction function through model output statistics (MOS). For forecast clear sky conditions, the NAM and GFS are found to be positively biased by up to 150 W m−2, while ECMWF MBE is small. The GFS and NAM forecasts were found to exceed clear sky irradiances by up to 40%, indicating an inaccurate clear sky model. For forecast cloudy conditions (kt < 0.4) the NAM and GFS models have a negative bias of up to −150 W m−2. ECMWF forecasts are most biased for moderate cloudy conditions (0.4 < kt < 0.9) with an average over-prediction of 100 W m−2.MOS-corrected NWP forecasts based on solar zenith angle and kt provide an important baseline accuracy to evaluate other forecasting techniques. MOS minimizes MBE for all NWP models. Root mean square errors for hourly-averaged daytime irradiances are also reduced by 50 W m−2, especially for intermediate clear sky indices. The MOS-corrected GFS provides the best solar forecasts for the CONUS with an RMSE of about 85 W m−2, followed by ECMWF and NAM. ECMWF is the most accurate forecast in cloudy conditions, while GFS has the best clear sky accuracy.  相似文献   

11.
Effects of solar photovoltaic panels on roof heat transfer   总被引:1,自引:0,他引:1  
Indirect benefits of rooftop photovoltaic (PV) systems for building insulation are quantified through measurements and modeling. Measurements of the thermal conditions throughout a roof profile on a building partially covered by solar photovoltaic (PV) panels were conducted in San Diego, California. Thermal infrared imagery on a clear April day demonstrated that daytime ceiling temperatures under the PV arrays were up to 2.5 K cooler than under the exposed roof. Heat flux modeling showed a significant reduction in daytime roof heat flux under the PV array. At night the conditions reversed and the ceiling under the PV arrays was warmer than for the exposed roof indicating insulating properties of PV. Simulations showed no benefit (but also no disadvantage) of the PV covered roof for the annual heating load, but a 5.9 kWh m−2 (or 38%) reduction in annual cooling load. The reduced daily variability in rooftop surface temperature under the PV array reduces thermal stresses on the roof and leads to energy savings and/or human comfort benefits especially for rooftop PV on older warehouse buildings.  相似文献   

12.
The urban heat island mitigation effect of conversion from asphalt-covered parking areas to grass-covered ones is estimated by observation and calculation. The mean surface temperature in a parking lot is calculated from a thermal image captured by an infrared camera. The sensible heat flux in each parking space is calculated based on the surface heat budget. The reduction in the sensible heat flux is estimated to be approximately 100-150 W m−2 during the day and approximately 50 W m−2 during the night, in comparison with an asphalt surface. The air temperature reduction by the spread of grass-covered parking areas is calculated to be about 0.1 °C. Furthermore, consideration is given to the appearance of the parking lot, the growth of grass, the effects of the weight of a car and the heat radiated from its engine, the costs of construction and maintenance, etc.  相似文献   

13.
The cost of electrode materials is one of the most important factors limiting the scale of microbial fuel cells (MFCs). In this study, a novel double-sided cloth (DC) without diffusion layer is using as air-cathode, which decreases the cost and simplifies electrode production process. Using Pt as catalyst, the maximum power density of MFC using DC cathode is 0.70 ± 0.02 W m−2, which is similar to that obtained using carbon cloth (CC) cathodes (0.66 ± 0.01 W m−2). After running in stable status, the Coulombic efficiencies (CEs) (18 ± 1%) and COD removal rates (75 ± 3%) are almost the same as those of CC cathode with diffusion layers. Using carbon powder as catalyst on the DC cathode, the maximum powder density is 0.41 ± 0.01 W m−2, with a COD removal rate of 66 ± 2% and a CE of 13.9 ± 0.5%. The total cost of cathode based on power output decreases as follows: CC with Pt (CC-Pt, 2652$ W−1), DC with Pt (DC-Pt, 1007$ W−1) and DC with carbon powder (DC-C, 22$ W−1), showing that DC is an inexpensive and promising cathode material for future applications.  相似文献   

14.
Scale-up of microbial fuel cells (MFCs) will require a better understanding of the effects of reactor architecture and operation mode on volumetric power densities. We compared the performance of a smaller MFC (SMFC, 28 mL) with a larger MFC (LMFC, 520 mL) in fed-batch mode. The SMFC produced 14 W m−3, consistent with previous reports for this reactor with an electrode spacing of 4 cm. The LMFC produced 16 W m−3, resulting from the lower average electrode spacing (2.6 cm) and the higher anode surface area per volume (150 m2 m−3 vs. 25 m2 m−3 for the SMFC). The effect of the larger anode surface area on power was shown to be relatively insignificant by adding graphite granules or using graphite fiber brushes in the LMFC anode chamber. Although the granules and graphite brushes increased the surface area by factors of 6 and 56, respectively, the maximum power density in the LMFC was only increased by 8% and 4%. In contrast, increasing the ionic strength of the LMFC from 100 to 300 mM using NaCl increased the power density by 25% to 20 W m−3. When the LMFC was operated in continuous flow mode, a maximum power density of 22 W m−3 was generated at a hydraulic retention time of 11.3 h. Although a thick biofilm was developed on the cathode surface in this reactor, the cathode potentials were not significantly affected at current densities <1.0 mA cm−2. These results demonstrate that power output can be maintained during reactor scale-up; increasing the anode surface area and biofilm formation on the cathode do not greatly affect reactor performance, and that electrode spacing is a key design factor in maximizing power generation.  相似文献   

15.
A surface floating, air cathode, microbial fuel cell (MFC) with a horizontal flow is devised and characterized using glucose-based synthetic wastewater. The performance of the MFC is significantly affected by the current-collector of the electrodes. When graphite foil ribbon (150 cm) serves as the current-collector, the respective specific internal resistance and maximum power density are 0.362 Ω m−2 and 124.0 W m−3. The internal resistance can be reduced by increasing the length of the current-collector. For a graphite ribbon current-collector 256 cm long, the specific internal resistance is only 0.187 Ω m−2 and the maximum power density markedly increases to 253.6 W m−3; however, the maximum power density is affected by the current-collector material. When the current-collector is changed to a stainless-steel wire, the maximum power density is reduced to approximately 100 W m−3 because of its high liquid|solid interfacial impedance. During three continuous months of operation, issues such as leaking are not observed and as such, the MFC could be easily scaled-up for wastewater treatment by increasing the electrode size and stacking a number of cells without additional ohmic resistance.  相似文献   

16.
The ability of electron transfer from microbe cell to anode electrode plays a key role in microbial fuel cell (MFC). This study explores a new approach to improve the MFC performance and electron transfer rate through addition of Tween 80. Results demonstrate that, for an air-cathode MFC operating on 1 g L−1 glucose, when the addition of Tween 80 increases from 0 to 80 mg L−1, the maximum power density increases from 21.5 to 187 W m−3 (0.6-5.2 W m−2), the corresponding current density increases from 1.8 to 17 A m−2, and the resistance of MFC decreases from 27.0 to 5.7 Ω. Electrochemical impedance spectroscopy (EIS) analysis suggests that the improvement of overall performance of the MFC can be attributed to the addition of Tween 80. The high power density achieved here may be due to the increase of permeability of cell membranes by addition of Tween 80, which reduces the electron transfer resistance through the cell membrane and increases the electron transfer rate and number, consequently enhances the current and power output. A promising way of utilizing surfactant to improve energy generation of MFC is demonstrated.  相似文献   

17.
This study prepares novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells (PEMFCs) via inserting a copper or aluminum mesh in polymer composites. The composition of polymer composites consists of 70 wt% graphite powder and 0-2 wt% modified multi-walled carbon nanotubes (m-MWCNTs). Results indicate that the in-plane electrical conductivity of m-MWCNTs/polymer composite bipolar plates increased from 156 S cm−1 (0 wt% MWCNT) to 643 S cm−1 (with 1 wt% MWCNT) (D.O.E. target >100 S cm−1). The bulk thermal conductivities of the copper and aluminum mesh hybrid polymer composite bipolar plates (abbreviated to Cu-HPBP and Al-HPBP) increase from 27.2 W m−1 K−1 to 30.0 W m−1 K−1 and 30.4 W m−1 K−1, respectively. The through-plane conductivities decrease from 37.8 S cm−1 to 36.7 S cm−1 for Cu-HPBP and 22.9 S cm−1 for Al-HPBP. Furthermore, the current and power densities of a single fuel cell using copper or aluminum mesh hybrid polymer composite bipolar plates are more stable than that of using neat polymer composite bipolar plates, especially in the ohmic overpotential region of the polarization curves of single fuel cell tests. The overall performance confirms that the metal mesh hybrid polymer composite bipolar plates prepared in this study are promising for PEMFC application.  相似文献   

18.
In this paper, a technique of hydrogen recovery from an electrocoagulation process treating dye-containing wastewater is presented. The electrocoagulation system used consists of a continuous-mode electrocoagulator connected with a gas separation tank and two sedimenters. It is shown that a significant amount of hydrogen can be harvested using the gas separation tank whose configuration follows that of a conventional upflow anaerobic sludge bed. The experimental hydrogen yields obtained were comparable with those calculated from theory. The electrical energy demand of the electrocoagulation process for treating Reactive Blue 140 and Direct Red 23 was 1.42 and 0.69 kWhe m−3, respectively, while the energy yield of harvested hydrogen was 0.2 kWh m−3. The quality of water treated by the electrocoagulation system was satisfactory, i.e., the color, COD and TS removal were 99%, 93% and 89%, respectively.  相似文献   

19.
This paper presents the achievements gained in solid sorption refrigeration prototypes since the end of the l970s, when interest in sorption systems was renewed. The applications included are ice making and air conditioning. The latter includes not only cooling and heating, but also dehumidification by desiccant systems. The prototypes presented were designed to use waste heat or solar energy as the main heat source. The waste heat could be from diesel engines or from power plants, in combined cooling, heating and power systems (CCHP). The current technology of adsorption solar-powered icemakers allows a daily ice production of between 4 and 7 kg m−2 of solar collector, with a solar coefficient of performance (COP) between 0.10 and 0.16. The silica gel–water chillers studied can be powered by hot water warmer than 55 °C. The COP is usually around 0.2–0.6, and in some commercially produced machines, it can be up to 0.7. The utilization of such chillers in CCHP systems, hospitals, buildings and grain depots are discussed. Despite their advantages, solid sorption systems still present some drawbacks such as low specific cooling power (SCP) and COP. Thus, some techniques to overcome these problems are also contemplated, together with the perspectives for their broad commercialisation. Among these techniques, a special attention was devoted to innovative adsorbent materials, to advanced cycles and to heat pipes, which are suitable devices not only to improve the heat transfer but also can help to avoid corrosion in the adsorbers. Recent experiments performed by the research group of the authors with machines that employ composite adsorbent material and heat pipes showed that it is possible to achieve a SCP of 770 W kg−1 of salt and COP of 0.39 at evaporation temperatures of −20 °C and generation temperature of 115 °C.  相似文献   

20.
Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective “cool colored” surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope ? 5:12 [23°]) by as much as 89 W m−2, and underestimate its peak surface temperature by up to 5 K. Using RE891BN to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%.We define clear sky air mass one global horizontal (“AM1GH”) solar reflectance Rg,0, a simple and easily measured property that more accurately predicts solar heat gain. Rg,0 predicts the annual peak solar heat gain of a roof or pavement to within 2 W m−2, and overestimates N by no more than 3%. Rg,0 is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that Rg,0 can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号