首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We report here a study of phosphazene polymer and oligomer electrolyte infiltration into high surface area titanium dioxide electrodes and its effect on the performance of dye-sensitized solar cells. The effects of different cell assembly procedures on the electrochemical properties are examined, as well as the infiltration of electrolytes based on poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] (MEEP), hexakis(2-(2-methoxyethoxy)ethoxy)cyclotriphosphazene (MEE trimer), and a linear short chain analogue into conventional titanium dioxide electrode mesoporous (nanosphere) films, microcolumns and nanowires. The effects of temperature, co-solvents, and the order of addition of the electroactive components are found to affect both the conductivity of the electrolytes and the electrochemical performance of the cells. Cross-sectional scanning electron microscopy (SEM) imaging is employed to examine the degree of electrolyte infiltration into the nanostructured electrodes as a function of filling conditions. Using these techniques, conditions are identified for achieving a high degree of pore filling by the three electrolyte systems. Increased power conversion efficiency is obtained when iodine is introduced after the heating and evacuation procedures required for maximum infiltration.  相似文献   

2.
A stable quasi-solid-state dye-sensitized solar cell (DSC) with a novel amphiphilic polymer gel electrolyte (APGE) based on poly(lactic acid-co-glycolic acid) (PLGA) is fabricated. The APGE could be readily prepared by a simple method at low temperature of 50 °C and exhibits a quasi-solid property, high conductivity, and long-term stability. The 20 and 40 wt% APGE-based DSCs show high photovoltaic conversion efficiency of 7.5 and 7.4%, respectively, under AM 1.5 simulated sunlight, which is comparable to the liquid electrolyte-based DSC with the efficiency of 7.6%. The 40 wt% APGE-based DSC maintains 95% of the initial performance after 60 days in practical conditions. It is also noteworthy that the APGE endows with higher short-circuit current density than the liquid electrolyte. Different natures of the APGE from the typical polymer gel electrolytes have been elucidated by the I-V measurements, electrochemical impedance spectroscopy, electrophoretic measurements, and transmission electron microscopy.  相似文献   

3.
An adjustment of a conduction band offset (CBO) of a window/absorber heterointerface is important for high efficiency Cu(In,Ga)Se2 (CIGS) solar cells. In this study, the heterointerface recombination was characterized by the reduction of the thickness of a CdS layer and the adjustment of a CBO value by a Zn1−xMgxO (ZMO) layer. In ZnO/CdS/CIGS solar cells, open-circuit voltage (Voc) and shunt resistance (Rsh) decreased with reducing the CdS thickness. In constant, significant reductions of Voc and Rsh were not observed in ZMO/CdS/CIGS solar cells. With decreasing the CdS thickness, the CBO of (ZnO or ZMO)/CIGS become dominant for recombination. Also, the dominant mechanisms of recombination of the CIGS solar cells are discussed by the estimation of an activation energy obtained from temperature-dependent current-voltage measurements.  相似文献   

4.
In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation.The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).  相似文献   

5.
A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.  相似文献   

6.
We have fabricated bulk heterojunction (BHJ) photovoltaic devices based on the as cast and thermally annealed P:[6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) blends and found that these devices gave power conversion efficiency (PCE) of about 1.15 and 1.60% respectively. P is a novel alternating phenylenevinylene copolymer which contains 2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid units along the backbone and was synthesized by Heck coupling. This copolymer was soluble in common organic solvents and showed long-wavelength absorption maximum at 390-420 nm with optical band gap of 1.94 eV. The improvement of PCE after thermal annealing of the device based on the P:PCBM blend was attributed to the increase in hole mobility due to the enhanced crystallinity of P induced by thermal treatment. In addition, we have fabricated BHJ photovoltaic devices based on the as cast and thermally annealed PB:P:PCBM ternary blend. PB is a low band gap alternating phenylenevinylene copolymer with BF2-azopyrrole complex units, which has been previously synthesized in our laboratory. We found that the device based on this ternary blend exhibited higher PCE (2.56%) as compared to either P:PCBM (1.15%) or PB:PCBM (1.57%) blend. This feature was associated with the well energy level alignment of P, PB and PCBM, the higher donor-acceptor interfaces for the exciton dissociation and the improved light harvesting property of the ternary blend. The further increase in the PCE with thermally annealed ternary blend (3.48%) has been correlated with the increase in the crystallinity of both P and PB. Finally, we used copolymer P as sensitizer for quasi solid state dye-sensitized solar cell and we achieved PCE of approximately 3.78%.  相似文献   

7.
Cu(In,Ga)Se2 Solar cells with graded band gap and efficiencies up to 13% have been fabricated on transparent ZnO:Al back contacts. The back contact structure includes a transparent 10 nm thin Mo interlayer with NaF precursor between the ZnO:Al and the Cu(In,Ga)Se2 absorber that transforms the blocking ZnO:Al/Cu(In,Ga)Se2 interface into an Ohmic back contact. To investigate the electronic quality of the back contact, the cells are analyzed by internal quantum efficiency measurements under illumination from front and back side. A new semianalytical model for the quantum efficiency of graded band gap absorbers yields quantitative information about the back contact recombination velocity as well as optical and electronic material parameters of the absorber layer. Band gap grading significantly increases carrier collection. However, in the immediate vicinity of the back contact carrier collection is limited by a high ratio of back contact recombination velocity and diffusion constant .  相似文献   

8.
The Global MARKAL-Model (GMM), a multi-regional “bottom-up” partial equilibrium model of the global energy system with endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local pollutants (SO2, NOx) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NOx removal, and CO2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution and CO2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits can be expected from policies directly addressing other issues then CO2 mitigation. Finally, the detailed analysis of the total generation cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil generation sources and fossil power plants with emission control.  相似文献   

9.
In the first part of this work [1] a field operational test (FOT) on micro-HEVs (hybrid electric vehicles) and conventional vehicles was introduced. Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology and flooded batteries were applied. The FOT data were analyzed by kernel density estimation. In this publication multiple regression analysis is applied to the same data. Square regression models without interdependencies are used. Hereby, capacity loss serves as dependent parameter and several battery-related and vehicle-related parameters as independent variables. Battery temperature is found to be the most critical parameter. It is proven that flooded batteries operated in the conventional power system (CPS) degrade faster than VRLA-AGM batteries in the micro-hybrid power system (MHPS).A smaller number of FOT batteries were applied in a vehicle-assigned test design where the test battery is repeatedly mounted in a unique test vehicle. Thus, vehicle category and specific driving profiles can be taken into account in multiple regression. Both parameters have only secondary influence on battery degradation, instead, extended vehicle rest time linked to low mileage performance is more serious.A tear-down analysis was accomplished for selected VRLA-AGM batteries operated in the MHPS. Clear indications are found that pSoC-operation with periodically fully charging the battery (refresh charging) does not result in sulphation of the negative electrode. Instead, the batteries show corrosion of the positive grids and weak adhesion of the positive active mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号