首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings.  相似文献   

2.
The use of solar energy in buildings is an important contribution for the reduction of fossil fuel consumption and harmful emissions to the environment. Solar thermal cooling systems are still in their infancy regarding practical applications, although the technology is sufficiently developed for a number of years. In many cases, their application has been conditioned by the lack of integration between cooling and heating systems. This study aims to evaluate the potential of integrated solar absorption cooling and heating systems for building applications. The TRNSYS software tool was used as a basis for assessment. Different building types were considered: residential, office and hotel. The TRNSYS models are able to run for a whole year (365 days), according to control rules (self-deciding whether to operate in heating or cooling modes), and with the possibility of combining cooling, heating and DHW applications. Three different locations and climates were considered: Berlin (Germany), Lisbon (Portugal), and Rome (Italy). Both energy and economic results are presented for all cases. The different local costs for energy (gas, electricity and water) were taken into account. Savings in CO2 emissions were also assessed. An optimization of solar collector size and other system parameters was also analysed.  相似文献   

3.
4.
F. Palacín  C. Monné 《Energy》2011,36(7):4109-4118
This paper focuses on the validation of a dynamic simulation model used to describe the performance of an existing solar cooling installation located in Zaragoza (Spain). The dynamic model has been developed under the simulation environment TRNSYS. The aim of this simulation model is to dispose of a tool in order to use it to evaluate different energy improvement actions in a real solar cooling installation. This solar cooling installation has been monitored and analyzed since 2007. The COP of this experimental solar cooling system presents a great influence from its heat rejection sink, a dry cooling tower. Once the model was validated with the experimental data obtained from the real installation, it was used to predict the chiller performance with a new geothermal sink, which started to operate in 2009. The present work describes the design and validation model process, as well as the comparison between the model results and the monitoring ones with the geothermal heat rejection system.  相似文献   

5.
C. Onan  D.B. Ozkan  S. Erdem   《Energy》2010,35(12):5277-5285
A solar assisted absorption refrigeration system (SAARS) was designed for acclimatizing of villas in Mardin which is located in Turkey and the performance of the system under different temperatures was analyzed by using MATLAB. Hourly cooling load calculation of the villas was done between 15th of May and 15th of September by considering the season for the cooling. Cooling capacity of the system (SAARS) was calculated as 106 kW. During the cooling period, the temperature of the environment shows the alteration between 40.3 °C and 13.2 °C. In the study, hourly exergy loss values are calculated with the software developed in matlab program and for the entire components of SAARS. The effect of the temperature alterations of the dead state on the exergy results is determined by taking dead state temperature as 25 °C and with more realistic approach, by taking it as the environment temperature. It was observed that the most of the exergy losses in the system have taken place in the solar collectors and then in the generator. Exergy loss in the collector changes between 10% and 70% while exergy loss in the generator changes between 5% and 8%. The effects of environmental temperature and solar insolation were stated for optimization.  相似文献   

6.
A control strategy for the operation of desiccant air-conditioning systems is proposed in this work. The proposed strategy consists of a basic scenario, while some alternative strategy schemes are also proposed on the basis of the approach adopted for the controlling of the humidifiers or the desiccant system operation modes included. The control strategy aims at sustaining the building conditions within values suitable for human thermal comfort, thus taking care of both temperature and humidity. The assessment of the proposed control strategy scenarios is performed in terms of effectiveness and efficiency, through the use of a desiccant system model, which takes into account the effect of transient phenomena as well. Specific information for the required hardware equipment and its implementation for the controlling of the respective system components is provided, pointing out the simplicity of the proposed solutions.  相似文献   

7.
K. Gommed  G. Grossman   《Solar Energy》2007,81(1):131-138
Growing demand for air conditioning in recent years has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the environmentally-friendly techniques which may help alleviate the problem. A promising solar cooling method is through the use of a liquid desiccant system, where humidity is absorbed directly from the process air by direct contact with the desiccant. The desiccant is then regenerated, again in direct contact with an external air stream, by solar heat at relatively low temperatures. The liquid desiccant system has many potential advantages over other solar air conditioning systems and can provide a promising alternative to absorption or to solid desiccant systems.Earlier work by the authors included theoretical simulations and preliminary experiments on the key components of the liquid desiccant system. The objective of the present study has been to construct a prototype system based on the knowledge gained, to monitor its performance, identify problems and carry out preliminary design optimization. A 16 kWt system was installed at the Energy Engineering Center at the Technion, in the Mediterranean city of Haifa. The system comprises a dehumidifier and a regenerator with their associated components operating together to dehumidify the fresh (ambient) air supply to a group of offices on the top floor of the building. LiCl-water is employed as the working fluid. The system is coupled to a solar collector field and employs two methods of storage – hot water and desiccant solution in the regenerated state. The performance of the system was monitored for five summer months under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the calculated performance parameters.  相似文献   

8.
In this paper, a solar hybrid desiccant air conditioning system, which combines the technologies of two-stage desiccant cooling (TSDC) and air-source vapor compression air-conditioning (VAC) together, has been configured, experimentally investigated and theoretically analyzed. The system mainly includes a TSDC unit with design cooling capacity for 10 kW, an air-source VAC unit with 20 kW in nominal cooling capacity, a flat plate solar collector array for 90 m2, a hot water storage tank and a cooling tower. Performance model of the system has been created in TRNSYS simulation studio. The objective of this paper is to report the test result of the solar hybrid air conditioning system and evaluate the energy saving potential, thereby providing useful data for practical application. Experimental results show that, under typical weather condition, the solar driven desiccant cooling unit can achieve an average cooling capacity of 10.9 kW, which contributes 35.7% of the cooling capacity provided by the hybrid system. Corresponding average thermal COP is over 1.0, electric COP is up to 11.48. Under Beijing (temperate), Shanghai (humid) and Hong Kong (extreme humid) weather conditions, the solar TSDC unit can remove about 57%, 69% and 55% of the seasonal moisture load, thereby reducing electric power consumption by about 31%, 34% and 22%, respectively. These suggest that the solar hybrid system is feasible for a wide range of operating conditions.  相似文献   

9.
In the last rice harvest season, experimental results have been obtained on the efficiency and drying quality of a solar assisted heat pump drying prototype system. The system has been operated as a solar and heat pump system and drying curves for the different options have been obtained. The advantage of the low temperature and better control in the drier shows that the heat pump assisted solar drying system is an excellent alternative to traditional drying systems.  相似文献   

10.
With the development of technologies and the fast increase of our population we will need to adjust the conventional electrical source to meet the continuous increasing demand. Since the energy cost as well as the environmental awareness is growing fast, technologies using renewable energies appear as an interesting alternative. The aim of this research is to present a solar-driven 30 kW LiBr/H2O single-effect absorption cooling system which has been designed and installed at Institut Universitaire Technologique of Saint Pierre. The first part of this article deals with the simulation of the solar thermal plant. A pilot plant has been setup as part of RAFSOL which is a research program managed by the national research agency (ANR).  相似文献   

11.
This paper presents a time-dependent heat and mass transfer analysis of an open roof surface as a solar collector-regenerator system for absorption air-conditioning. The system consists of water evaporation from a lithium chloride solution (LiClH2O) flowing on the roof of a building. The analysis takes into account the variation of the solution temperature-concentration and hence the water evaporation from the absorbent solution along the flow length of the regenerator and the periodic variation of the solar intensity and the ambient air temperature. The effects of operational parameters, viz. solution flow rate, regenerator length, humidity ratio and the inlet solution conditions, on the time dependence of the water evaporation have been investigated. It is ascertained that about 2.5–4.0 kg of water can be evaporated per unit solar regenerator area per day under typical operating conditions, and for every kg of water evaporated in the regenerator, 1 kg of water can be evaporated in the evaporator of the absorption cooling system. The overall average daily COP of the cooling system is found to be in the range 0.36–0.57 for a typical hot and dry climate, and hence, the system is more attractive for solar air-conditioning.  相似文献   

12.
A prototype low capacity (10 kW) single stage Li–Br absorption heat pump (AHP), suitable for residential and small building applications has been developed as a collaborative result between various European research institutes and industries. The primary heat source for the AHP is supplied from flat plate solar collectors and the hot/chilled water from the unit is delivered to a floor heating/cooling system. In this paper we present the simulation results and an overview of the performance assessment of the complete system. The calculations were performed for two building types (high and low thermal mass), three climatic conditions, with different types of solar collectors and hot water storage tank sizes and different control systems for the operation of the installation. The simulations were performed using the thermal simulation code TRNSYS. The estimated energy savings against a conventional cooling system using a compression type heat pump was found to be in the range of 20–27%.  相似文献   

13.
The implementation of a variable structure fuzzy logic controller for a solar powered air conditioning system and its advantages are investigated in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. Two different control schemes for the DC motors rotational speed adjustment are implemented and tested: the first one is a pure fuzzy controller, its output being the control signal for the DC motor driver. A 7 × 7 fuzzy matrix assigns the controller output with respect to the error value and the derivative of the error. The second scheme is a two-level controller. The lower level is a conventional PID controller, and the higher level is a fuzzy controller acting over the parameters of the low level controller. Step response of the two control loops are presented as experimental results. The contribution of this design is that in the control system, the fuzzy logic is implemented through software in a common, inexpensive, 16-bit microcontroller, which does not have special abilities for fuzzy control.  相似文献   

14.
The four stroke, spark ignition (SI) engine pressure–volume diagram (pV) contains two main parts. They are the compression–combustion–expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the pV diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone.  相似文献   

15.
The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system’s dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented.  相似文献   

16.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

17.
Exergy or the available energy is based on the second law of thermodynamics and goes back to Maxwell and Gibbs. It is the exergy content and not the energy content, that truly represents the potential of the substance to cause change. Exergy is the only rational basis for evaluating the system performance. The aim of this project is to study in detail the exergy variation in the solar assisted absorption system. The influence of the cycle parameters are analysed on the basis of first law and second law effectiveness and the results indicated various ways of improving system performance by better design. Also a better quality of the evaporator has more effect on the system performance than the better quality of other components. It was shown that second law analysis quantitatively visualizes losses within a system and gives clear trends for optimization.  相似文献   

18.
In this article, a theoretical study is presented for a solar powered combined system comprising a LiBr---H2O absorption cooling machine and a multiple-effect distillator (MED). The MED has 8 VTE of the falling film type, and it replaces the condenser in conventional absorption machines. Steam released at the generator pressure is supplied to the effect which matches its conditions, and the condensate follows its usual route towards the evaporator of an A/C unit. Thus, the MED is powered by the waste heat of the absorption machine which improves the overall gain and the thermodynamic characteristics significantly.

Governing equations for the combined system are given and are numerically solved. Medium parabolic concentrators are used to power the system, and a transient simulation for the combined arrangement is presented.

Results are given for a typical design summer day in Jeddah, Saudi Arabia, for a range of firing temperatures 150–190°C with a storage temperature amplitude of 10–20°C over a daily working period of 12 h. For a given cooling load of 100 ton refrigeration, the system can produce up to 40m3 of fresh water at a specific collector area of 12.41. H2O plus 0.03 TR/m2. The overall COPo reaches 1.44, which is more than twice that of a conventional absorption machine at the same temperature levels.  相似文献   


19.
Due to the increasing energy consumption of air conditioning in buildings and the need to decrease the fossil CO2 emissions to the environment, the interest of using renewable energy sources shows up stronger than ever.We present a general study whose aim is to propose a method to evaluate an upper bound in the potential of solar cooling by using some simplified models. As an example it has been applied to the very diverse climates of Spain. In the paper it has been assumed a direct solar coupling between the solar collector field and a single effect absorption cooling machine, without any intermediate solar storage tank. An equation is obtained that shows the dependence of the generator/solar-collectors equilibrium temperature on basic design parameters of the system (absorption machine-solar collectors). The paper analyzes the effect of these on the total amount of cooling produced along a typical mean year and the peak cooling power. The paper also includes a discussion on how to estimate the values and what is their physical meaning of the parameters which define the behavior of real absorption machines.Finally tables are included for the 12 climates of Spain that can be used as an example of how to make a quick pre-sizing of such direct coupled system. The classification of the Spanish climates is based on general data (average monthly total horizontal solar radiation, average monthly dry temperature, etc.) and the results could be generalized for climates with the same severity. Moreover if hourly weather data is available for any place (like tmy2, bin, epw, etc. files), the procedure can be applied without further changes.  相似文献   

20.
This paper is concerned with experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator. By using the second generator together with a lunate thermosiphon elevation tube, the required minimum driving temperature of the heat source is only 68 °C compared to above 100 °C in traditional absorption refrigeration systems. Based on the horizontal-tube falling-film method, the performance of the absorber can be enhanced by the second generator due to an increase in the differential concentration of the solution between the inlet and the outlet of the absorber and an increase in the temperature difference between the inlet and the outlet of the cooling water in the absorber. The yield of condensate with the second generator open is increased by 68% compared to that with the second generator closed. The performance of the evaporator is significantly improved due to the increase in temperature drop of the chilled water and the decrease in the outlet temperature of the chilled water. This leads to an improvement of the performance of the overall refrigeration system. The maximum coefficient of performance (COP) approaches 0.787.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号