共查询到18条相似文献,搜索用时 15 毫秒
1.
In this study, a theoretical ventilated photovoltaic (PV) façade, which functions as a pre-heating device in winter and a natural ventilation system in summer and reduces PV module temperatures, was analysed. The interrelationship between an optimum proportion of transparent window (and an opaque PV module) to the total façade area, and the variables relevant to the energy performance was assessed. The design parameters under consideration have been categorised according to climate, building characteristics, façade configurations and PV system elements. One outcome of this investigation is a new index, effectiveness of a PV Façade (PVEF), that has been developed to evaluate the overall energy performance of a PV façade with regard to the proportion of useful daylight that may displace the use of electric lighting, and the electricity generated by the PV modules to the heating and cooling energy consumption within a building. In conclusion, the electricity generation and the factors, affecting the ventilation performance of a ventilated PV façade, have been presented. 相似文献
2.
The aim of this article is to present results of an experimental campaign performed on a full-scale facility provided with a double-skin façade. The behaviour of this architectural concept is tested under controlled climatic conditions. A summer case is scrutinised under different configurations: variation of the airflow through the double-skin façade and different angle of the solar shading device. This paper describes the experimental conditions, as well the test facility and the tested façade element. The results show the temperatures of the test cell and the façade and how they depend on the climatic conditions and the sun-shading device blade angles. One objective of this research was to measure and provide extensive data set detailing air and surface temperatures on the double-skin façade, together with airflow rates and air velocities. The experiments are fully described so that the results can be used for the validation of numerical models dealing with ventilated double-skin façades with venetian sun-shading device. 相似文献
3.
PV-Trombe wall (PVTW) is a novel version of Trombe-wall. Photovoltaic cells on the cover glazing of the PVTW can convert solar radiation into electricity and heat simultaneously. A window on the south façade can also introduce solar heat into the room in the winter season. Experiment has been conducted to study the temperature field of a building with both southern facing window and the PVTW. A dynamic numerical model is developed for the simulation of the whole building system. The temperature of the indoor air is found to be vertically stratified from the measurement. The nodal model is adopted to calculate the temperature profile in the room. The simulation results are in good agreement with the experimental data. The different south façade designs affect the thermal efficiency of the PVTW significantly from the numerical simulation. With a southern facing window, the thermal efficiency of the PVTW is reduced by 27% relatively. The increase of PV coverage on the glazing can reduce the thermal efficiency of the TW by up to 17%. By taking account of electric conversion, the total efficiency of solar utilization is reduced by 5% at most while the glazing is fully covered with PV cells. The electric conversion efficiency of the PVTW achieves 11.6%, and is slightly affected by south façade designs. 相似文献
4.
Rémi Charron 《Solar Energy》2006,80(5):482-491
Double-façades with integrated photovoltaic panels may be employed to generate electricity, thermal energy and for daylighting. A theoretical study of double-façades with integrated photovoltaics (PV) and motorized blinds is presented, which investigates the effect of various design parameters in order to maximize the conversion of solar radiation to useful energy. Two configurations of the façade with a lower section with integrated PV and an upper Vision (viewing) section with motorized blinds, are examined. A one-dimensional finite-difference thermal model is developed, with an algorithm that iteratively determines which convective heat transfer coefficient correlation to use for each surface inside the cavity using expressions that consider system characteristics and temperature distribution. When PV modules are installed in the middle of the cavity, air flows on both sides, increasing PV section overall (thermal-electric) efficiency by about 25%, but lowers electricity generation by 21%. Integrating 0.015 m long, 0.002 m wide fins to the PV back plate leads to a similar increase in efficiency without compromising electricity generation. Placing the blind in the middle of the cavity increases the Vision section efficiency by 5%. Using this approach to optimize performance can lead to combined thermal-electric efficiencies of over 60%. 相似文献
5.
Integrating solar collectors as building elements is one of the most promising way to decrease the cost of the delivered energy and to increase the architectural acceptance of energy self-supplying buildings.For that purpose, steel-made coloured unglazed solar absorbers as facade elements were investigated. Besides the questions of building integration, selective layer, durability and industrial production, it is essential to study the potential yield of such devices and to optimize the design and sizing of the complete heating system. Simulations were carried out using the TNRSYS program in different European climates.Results show that the absorbers reach appreciable efficiency for domestic water preheating but rather low yields when connected to the space heating circuit. Sensitivity of the quantity of saved energy towards the sizing parameters (absorbance, emissivity, orientation, wind, surface, radiator outlet temperature) was analysed. Based on a large set of simulations, general formulas completed by a European map of constants required by said formulas were established that allow calculating the absorbers yield without running complete simulations.General conclusion is that the best use of façade absorbers is water preheating in urban (wind-sheltered) environment. 相似文献
6.
Results of an extensive measurement campaign performed on an active transparent façade during actual operating conditions are presented. The main aims of the research were: to assess the actual façade performance, both in terms of energy savings and enhanced comfort conditions, to obtain more detailed knowledge of its thermofluid dynamic behaviour and to highlight the weak points of this relatively new technology that still requires further improvement. The analysed component consists of a transparent mechanically ventilated façade integrated with an HVAC system. The façade is used as the exhaust outlet of the HVAC system. The temperatures, heat fluxes and air velocities in the ventilated façade were continuously monitored, over a period of 2 years, using a monitoring system with 34 sensors. In the paper, attention is focused on the measurement techniques that were adopted and on the critical analysis of the experimental data. 相似文献
7.
This paper presents a simulation case study of façade and envelope preliminary design options for the new Engineering building of Concordia University in Montreal. A major principle of the analysis was to create a high quality building envelope in order to optimally control solar gains, reduce heating and cooling energy demand and reduce electricity consumption for lighting, while at the same time maintain a comfortable and pleasant indoor environment. The stated approach of the design team was to aim for an energy-efficient building, employing innovative technologies and integrating concepts such as daylighting and natural ventilation. Detailed energy simulations were therefore performed from the early design stage, in order to present recommendations on the choice of façade, glazings, shading devices, lighting control options, and natural ventilation. Integrated thermal studies, a daylighting analysis and the impact of the above on HVAC system sizing were considered. Simulation results showed that, using an optimum combination of glazings, shading devices and controllable electric lighting systems, the energy savings in perimeter spaces can be substantial. Perimeter heating could be eliminated if a high performance envelope is used. The building is currently being commissioned. 相似文献
8.
This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab (∼33 m2). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 °C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. 相似文献
9.
J.M. Sierra S.J. Figueroa-Ramírez S.E. Díaz J. Vargas P.J. Sebastian 《International Journal of Hydrogen Energy》2014
In this research a 3D numerical study on a PEM fuel cell model with tubular plates is presented. The study is focused on the performance evaluation of three flow fields with cylindrical geometry (serpentine, interdigitated and straight channels) in a fuel cell. These designs are proposed not only with the aim to reduce the pressure losses that conventional designs exhibit with rectangular flow fields but also to improve the mass transport processes that take place in the fuel cell cathode. A commercial computational fluid dynamics (CFD) code was used to solve the numerical model. From the numerical solution of the fluid mechanics equations and the electrochemical model of Butler-Volmer different analysis of pressure losses, species concentration, current density, temperature and ionic conductivity were carried out. The results were obtained at the flow channels and the catalyst layers as well as in the gas diffusion layers and the membrane interfaces. Numerical results showed that cylindrical channel configurations reduced the pressure losses in the cell due to the gradual reduction of the angle at the flow path and the twist of the channel, thus facilitating the expulsion of liquid water from the gas diffusion layers and in turn promoting a high oxygen concentration at the triple phase boundary of the catalyst layers. Moreover, numerical results were compared to polarization curves and the literature data reported for similar designs. These results demonstrated that conventional flow field designs applied to conventional tubular plates have some advantages over the rectangular designs, such as uniform pressure and current density distributions among others, therefore they could be considered for fuel cell designs in portable applications. 相似文献
10.
In order to make distributed generation systems for apartment buildings economically viable, it is essential to develop an efficient and low‐cost heat supply system. We are developing a new cogeneration system (Neighboring CoGeneration system: NCG system). The key concept of this system is to install a heat storage unit for the hot water supply, floor heating, and bath heating in each house, and to connect the heat storage units by a single‐loop hot water pipe. The system leads to time leveling of the total heat supply and reduced installation costs. Furthermore, it is expected that the cogeneration can operate according to electrical demand because of the large heat storage capacity of the system. In this study, a dynamic simulation model is developed to evaluate the performance and environmental load‐reduction effect of the NCG system for 50 households. The results show that the NCG system can supply sufficient heat for peak demand in winter and reduce annual CO2 emissions by 23% on average. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 42(8): 745–757, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20376 相似文献
11.
Energy performance of a hybrid space-cooling system in an office building using SSPCM thermal storage and night ventilation 总被引:1,自引:0,他引:1
Thermal performance of a hybrid space-cooling system with night ventilation and thermal storage using shape-stabilized phase change material (SSPCM) is investigated numerically. A south-facing room of an office building in Beijing is analyzed, which includes SSPCM plates as the inner linings of walls and the ceiling. Natural cool energy is charged to SSPCM plates by night ventilation with air change per hour (ACH) of 40 h−1 and is discharged to room environment during daytime. Additional cool-supply is provided by an active system during office hours (8:00-18:00) necessary to keep the maximum indoor air temperature below 28 °C. Unsteady simulation is carried out using a verified enthalpy model, with a time period covering the whole summer season. The results indicate that the thermal-storage effect of SSPCM plates combined with night ventilation could improve the indoor thermal-comfort level and save 76% of daytime cooling energy consumption (compared with the case without SSPCM and night ventilation) in summer in Beijing. The electrical COPs of night ventilation (the reduced cooling energy divided by fan power) are 7.5 and 6.5 for cases with and without SSPCM, respectively. 相似文献
12.
The thermal performance of a prototype solar cooker based on an evacuated tube solar collector with phase change material (PCM) storage unit is investigated. The design has separate parts for energy collection and cooking coupled by a PCM storage unit. Solar energy is stored in the PCM storage unit during sunshine hours and is utilized for cooking in late evening/night time. Commercial grade erythritol was used as a latent heat storage material. Noon and evening cooking experiments were conducted with different loads and loading times. Cooking experiments and PCM storage processes were carried out simultaneously. It was observed that noon cooking did not affect the evening cooking, and evening cooking using PCM heat storage was found to be faster than noon cooking. The cooker performance under a variety of operating and climatic conditions was studied at Mie, Japan. 相似文献
13.
A performance of an evacuated tubular collector (G.E. design) fixed at the focus of a compound parabolic concentrator is investigated. In the G.E. design, heat is transmitted to the circulating fluid inside a U-tube. The U-tube is in contact with the receiver only on a line along the length of the receiver. This results in a non-uniform temperature distribution on the receiver in the θ-direction. The effect of the non-uniform temperature distribution on the performance parameters of the collector, viz. overall heat loss coefficient, plate efficiency factor and heat removal factor, has been studied. The results are presented in the form of a graph. 相似文献
14.
A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H2O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m2 vacuum tube solar collector, a 4.5 kW LiBr/H2O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m2 Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m2 (between 11 and 13.30 h) and ambient temperature of 24 °C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 °C, demonstrating its potential use in cooling domestic scale buildings. 相似文献
15.
S. Merdes R. MainzJ. Klaer A. MeederH. Rodriguez-Alvarez H.W. SchockM.Ch. Lux-Steiner R. Klenk 《Solar Energy Materials & Solar Cells》2011,95(3):864-869
A Cu(In,Ga)S2-based solar cell with a confirmed efficiency of 12.6% together with an open circuit voltage of 879 mV, prepared from sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor, is reported. The performance of the new cell is superior to those obtained previously with multi-source evaporated absorbers. We show that by carefully adjusting the temperature profile, good absorber properties could be transferred from a long process to a rapid thermal process. The improved efficiency is due to an appropriate degree of gallium diffusion toward the surface, which could be achieved despite the short sulfurization time. Absorber and solar cell characteristics are presented. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(20):7442-7459
Optimal flow channel design of a fuel cell is crucial to further improve the performance of polymer electrolyte membrane fuel cell (PEMFC). In this work, a comprehensive parametric study was conducted to analyze the performance of a PEMFC with conventional parallel serpentine flow fields (PSFF) and parallel serpentine-baffled flow fields (PSBFF). A three-dimensional two-phase computational fluid dynamics model was used to numerically simulate the fuel cell performance. The effects of operating parameters such as pressure, temperature, and stoichiometric ratio, as well as the geometric parameters of channel height to channel width ratio and rib width to channel width ratio for both flow fields on fuel cell performance were investigated. The results show that as pressure, temperature, and stoichiometric ratio increase, cell performance increases for both flow fields, with a more substantial rate of improvement for the PSBFF design. A 16.1% improvement in cell performance at an operating pressure of 1 atm, a 19.9% improvement at a cell temperature of 70 °C, and a 16.1% improvement at a stoichiometric ratio of 2 were obtained when PSBFF was used instead of PSFF. By increasing the channel height and rib width, the cell performance for PSBFF remains almost constant due to the improved forced convection of the gas mixture and the reduction in concentration loss, while the cell performance for PSFF decreases significantly. At the largest channel height to channel width ratio of 1.5 and rib width to channel width ratio of 1.315 studied in this work, an improvement in cell performance of 53.3% and 58.5%, respectively, was achieved when PSBFF was used instead of PSFF. In addition, PSBFF was more effective in removing water from the porous zones than PSFF under all conditions. 相似文献
17.
Emile Tabu Ojong Jason Tai Hong Kwan Amin Nouri-Khorasani Arman Bonakdarpour David P. Wilkinson Tom Smolinka 《International Journal of Hydrogen Energy》2017,42(41):25831-25847
A semi-empirical non-isothermal model incorporating coupled momentum, heat and mass transport phenomena for predicting the performance of a proton exchange membrane (PEM) water electrolysis cell operating without flow channels is presented. Model input parameters such as electro-kinetics properties and mean pore size of the porous transport layer (PTL) were determined by rotating disc electrode and capillary flow porometry, respectively. This is the first report of a semi-empirical fully coupled model which allows one to quantify and investigate the effect of the gas phase and bubble coverage on PEM cell performance up to very high current densities of about 5 A/cm2. The mass transport effects are discussed in terms of the operating conditions, design parameters and the microstructure of the PTL. The results show that, the operating temperature and pressure, and the inlet water flowrate and thickness of the PTL are the critical parameters for mitigating mass transport limitation at high current densities. The model presented here can serve as a tool for further development and scale-up effort in the area of PEM water electrolysis, and provide insight during the design stage. 相似文献
18.
S. Ishizuka K. Sakurai A. Yamada K. Matsubara P. Fons K. Iwata S. Nakamura Y. Kimura T. Baba H. Nakanishi T. Kojima S. Niki 《Solar Energy Materials & Solar Cells》2005,87(1-4):541
The correlation of the cell performance of wide-gap Cu(In1−xGax)Se2 (CIGS) solar cells with the thickness of highly resistive i-ZnO layers, which are commonly introduced between the buffer layer and the transparent conductive oxide (TCO) layer in CIGS solar cell devices, was studied. It was found that cell parameters, in particular, the fill factor (F.F.) varied with the thickness of the i-ZnO layers and the variation of the F.F. was directly related to cell efficiency. A 16%-efficiency was achieved without use of an anti-reflection coating from wide-gap (Eg1.3 eV) CIGS solar cells by adjusting the deposition conditions of the i-ZnO layers. 相似文献