共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces design and application of a novel one-axis sun tracking system which follows the position of the sun and allows investigating effects of one-axis tracking system on the solar energy in Turkey. The tracking system includes a serial communication interface based on RS 485 to monitor whole processes on a computer screen and to plot data as graphic. In addition, system parameters such as the current, the voltage and the panel position have been observed by means of a microcontroller. The energy collected is measured and compared with a fixed solar system for the same solar panel. The results show that the solar energy collected on the tracking system is considerably much efficient than the fixed system. The tracking system developed in this study provides easy installation, simple mechanism and less maintenance. 相似文献
2.
This paper deals with a multipurpose dual-axis solar tracker that can be applied to solar power systems. This tracker employs a declination-clock mounting system that locates the primary axis in east-west direction. Based on this mounting system, normal tracking strategy and daily adjustment strategy are developed for flat Photovoltaic (PV) systems and Concentrating Solar Power (CSP) systems respectively. While the former strategy keeps the tracking errors smaller than the pre-specified values, the latter one simplifies the tracking process by adjusting the primary axis once a day and driving the secondary axis to rotate at a constant speed of 15°/h. Results of the accuracy test indicate that the tracking error of the normal tracking strategy is within 0.15°. The other strategy may have greater tracking errors, but its annual average cosine loss for flat PV systems is estimated to be below 1.3%. Furthermore, in the test on the output of the PV modules, it is found that the average energy efficiency of the normal tracking PV, compared with the fixed PV, is more than 23.6%. And the average energy efficiency of the daily adjusted PV is more than 31.8%. Results of the experiment show that the two tracking strategies are both feasible for the developed tracker. 相似文献
3.
A design aid expert system for solar photovoltaic (PV) power supplies corresponding to Indian region is developed. The knowledge base is evolved from the climatological data of 14 stations in Indian region. The approach involves combining both the site and array characteristics in a single parameter referred to as equivalent unit array output and expressing the composite parameter as a function of geographical co-ordinates. The resultant expert system is envisioned to provide general users the power of an expert, in the matter of design considerations. It will also be easily adaptable to a change of design conditions. It considers two modes of system operation; with battery storage and without battery storage. It enables the determination of size of PV array and battery bank, which meet the demand of load throughout the year allowing the battery to be discharged up to a minimum acceptable level. 相似文献
4.
In this study, a novel high accurate offline sensorless dual-axis solar tracker is proposed that can be widely used in photovoltaic systems and solar concentrators. The offline estimated data extracted from solar map equations are used by the tracker to find the sun direction where the maximum value of solar energy is captured. The solar tracker has been built, and it is experimentally verified that 19.1%–30.2% more solar energy can be captured depending on the seasons by utilizing the tracker. The contribution of this work is that the proposed offline sensorless dual-axis solar tracker not only has a very simple structure with a fabrication cost much less than sensor based solar trackers but also high accurately tracks the sun direction with a very small tracking error of only 0.43° which is less than the other sensorless and sensor based dual-axis solar trackers reported in the literature excluding the sensor based dual-axis solar trackers equipped with expensive sensors mounted on high accurate mechanical carriers. Furthermore, unlike all sensor based solar trackers, since the technique is offline, the proposed tracker does not use any feedback signal, and thus, its operation is independent from external disturbances and weather conditions such as cloudy sky. 相似文献
5.
The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. 相似文献
6.
This paper analyses the operation of an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the SPV modules by changing the duty ratio of the boost converter. The duty ratio of the boost converter is calculated for a given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate maximum power corresponding to the given solar irradiance level and temperature. The response of the ANFIS-based control system is highly precise and offers an extremely fast response. The response time is seen as nearly 1 ms for fast varying cell temperature and 6 ms for fast varying solar irradiance. The simulation is done for fast-changing solar irradiance and temperature conditions. The response of the proposed controller is also presented. 相似文献
7.
In this paper, a novel hybrid maximum power point tracking (MPPT) method is proposed and investigated. The proposed MPPT technique combines the simplicity of perturb and observe (P&O) method and the fast tracking ability of open circuit voltage (OCV) method. The advantages of the proposed MPPT approach include fast tracking speed, no additional circuit required and no temporary power loss. To validate the feasibility of the proposed MPPT technique, an 1.2 kW thermoelectric generation system for industrial waste heat recovery is also constructed, experimental results show that comparing with conventional P&O technique, the proposed method can improve the tracking speed for 42.9% and 86.2% when temperature differences are ΔT = 60 °C and ΔT = 180 °C, respectively. Moreover, the energy loss can be improved by 24.0% and 87.0% when temperature differences are ΔT = 60 °C and ΔT = 180 °C, respectively. 相似文献
8.
Chong Li Dequn Zhou Weiyan Yu Hui Wang Dasheng Zhu Menghui Sun Guo Li 《International Journal of Hydrogen Energy》2017,42(10):6502-6510
This paper compares the performance of a 2.02 kWp off-grid residential solar photovoltaic (PV) power system using PVSYST simulation software for a household in Kunming, Yunnan province, China. The monthly available solar energy; missing energy; array, final, and reference yields, performance ratio; and array capture and system losses were analyzed for five solar tracking modes: fixed tilted plane, seasonal tilt adjustment, horizontal axis tracking, vertical axis tracking, and dual axis tracking. Although there were some similar aspects across the five systems, minimum available solar energy (2461 kWh/y) and maximum missing energy (134.68 kWh/y) were obtained using the fixed tilted plane system (tilt angle = 25°, azimuth angle = 0°), whereas maximum available solar energy (3081 kWh/y) and minimum missing energy (48.53 kWh/y) in October were obtained using the dual axis tracking system. Average monthly performance ratio was maximal for the fixed tilted plane system (0.689), and minimal for the dual axis tracking system (0.596). 相似文献
9.
J. Caada M.P. Utrillas J.A. Martinez-Lozano R. Pedrs J.L. Gmez-Amo A. Maj 《Renewable Energy》2007,32(12):2053-2068
An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectroradiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330–1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. 相似文献
10.
This paper deals with a dual-axis sun tracking system for a photovoltaic system. Its trajectories are determined by an optimization procedure. The optimization goal is the maximization of the electrical energy production within a photovoltaic system, by considering the tracking system consumption. The procedure used for determining the tilt angle and azimuth angle trajectories is described as a nonlinear and bounded optimization problem. Since an explicit form of the objective function is unavailable, a stochastic search algorithm called Differential Evolution is applied as the optimization tool. In order to evaluate the objective function, models for calculating the available solar radiation and tracking system consumption are applied together with the efficiencies of solar cells, a DC/DC converter and inverter. A new algorithm is introduced for the time dependent prediction of available solar radiation. It is based on the length of a sunbeam’s path through the atmosphere and the statistical data of a pyranometer measured total and diffuse solar radiation at a given location on the Earth. The optimization bounds are given in the form of angular speed, lower and upper bounds for both angles and angle quantization. The results presented in this paper show, that the optimal trajectories can help to increase the electrical energy production within photovoltaic systems by sun tracking. 相似文献
11.
The overall performance of a solar thermal electrical power generation system is governed by the performance of the energy collection system and the power conversion unit. Any system operating under given meteorological and solar radiation conditions has a unique energy collection temperature for which the electrical output of the system will be a maximum. An engineering analysis of the system was carried out to obtain general correlations which can be used for determining such an optimum temperature. Factual experience on the design and operation of a Rankine system, using flat plate collectors and the climatological data, was used to obtain numerical estimates for the net energy conversion capability of such systems operating in Kuwait. 相似文献
12.
This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions.The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that, the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day. 相似文献
13.
A novel algorithm for seeking the maximum power point of a photovoltaic (PV) array for any temperature and solar irradiation level, needing only the PV current value, is proposed. Satisfactory theoretical and experimental results are presented and were obtained when the algorithm was included on a 100 W 24 V PV buck converter prototype, using an inexpensive microcontroller. The load of the system used was a battery and a resistance. The main advantage of this new maximum power point tracking (MPPT), when is compared with others, is that it only uses the measurement of the photovoltaic current, IPV. 相似文献
14.
This article presents a feasibilty on a solar power system based on the Stirling dish (SD) technology, reviews and compares the available Stirling engines in the perspective of a solar Stirling system.The system is evaluated, as a parameter to alleviate the energy system of the Cretan island while taking care of the CO2 emissions. In the results a sensitivity analysis was implemented, as well as a comparison with conventional power systems.In the long-term, solar thermal power stations based on a SD can become a competitive option on the electricity market, if a concerted programme capable of building the forces of industry, finance, insurance and other decision makers will support the market extension for this promising technology. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(16):8548-8565
In this paper, a novel molten carbonate fuel cell hybrid power generation process with using solar parabolic dish thermal energy is proposed. The process contains MCFC, Oxy-fuel and Rankine power generation cycles. The Rankine power generation cycles utilized various types of working fluid to emphasize taking advantage of the cycles in different thermodynamic conditions. The required hot and cold energies are provided from solar dish parabolic thermal hot and liquefied natural gas (LNG) cold energies, respectively. The carbon dioxide (CO2) from MCFC effluent stream is captured from the process at liquid state. The process total heat integrated and in this regards, no need to any hot and cold external sources with the net electrical power generation. The energy and exergy analysis are conducted to determine the approaches to improve the process performance. This integrated structure consumed 2.30 × 106 kg h−1 of air and 2.67 × 106 kg h−1 of LNG to generate 292597 kW of net power. The products of this integrated structure are 6.25 × 104 kg h−1 of condensates, 183 kg h−1 of water vapor, 2.20 × 106 kg h−1 of MCFC effluent stream, 2.60 × 106 kg h−1 of natural gas and 1.10 × 105 kg h−1 of CO2 in liquid state. The presented new integrated structure has overall thermal efficiency of 73.14% and total exergy efficiency of 63.19%. Also, sensitivity analysis is performed for determination of the process key parameters which affected the process operating performance. 相似文献
16.
Solar aided power generation (SAPG) is an efficient way to make use of low or medium temperature solar heat for power generation purposes. The so‐called SAPG is actually ‘piggy back’ solar energy on the conventional fuel fired power plant. Therefore, its solar‐to‐electricity efficiency depends on the power plant it is associated with. In the paper, the developed SAPG model has been used to study the energy and economic benefits of the SAPG with 200 and 300 MW typical, 600 MW subcritical, 600 MW supercritical, and 600 and 1000 MW ultra‐supercritical fuel power units separately. The solar heat in the temperature range from 260 to 90°C is integrated with above‐mentioned power units to replace the extraction steam (to preheat the feedwater) in power boosting and fuel‐saving operating modes. The results indicate that the benefits of SAPG are different for different steam extracted positions and different power plants. Generally, the larger the power plant, the higher the solar benefit if the same level solar is integrated. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
The effect of the maximum swing angle of the sun (0°, 15°, 30°, 45° and 60°) away from the normal is observed on the maximum power output of an amorphous silicon solar PV module using a solar simulator. Studies reveal that as the panel inclination is increased, the maximum power produced (Pmp) by the module decreases. Solar equations are used to compute the maximum swing angle of the sun away from the normal position of the panel at noon (λ) during March, June, September and December months and are computed for various selected locations such as Mumbai, Ludhiana, Fargo, London and Moscow. An analogy between the simulated study and λ (for real operation conditions) for polar-mounted inclinations of PV panels is established and the effect of λ on the percent reduction of maximum power produced (Pmp) by the PV solar panel is studied. 相似文献
18.
Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem. 相似文献
19.
Solar PV arrays made of interconnected modules are comparatively less susceptible to shadow problem and power degradation resulting from the aging of solar cells. This paper presents a simulation model for the sizing of stand-alone solar PV systems with interconnected arrays. It considers the electricity generation in the array and its storage in the battery bank serving the fluctuating load demand. The loss of power supply probability (LPSP) is used to connote the risk of not satisfying the load demand. The non-tracking (e.g., fixed and tilted) and single-axis tracking aperture arrays having cross-connected modules of single crystalline silicon solar cells in a (6×6) modular configuration are considered. The simulation results are illustrated with the help of a numerical example wherein the load demand is assumed to follow uniform probabilistic distribution. For a given load, the numbers of solar PV modules and batteries corresponding to zero values of LPSP on diurnal basis during the year round cycle of operation are presented. The results corresponding to the surplus and deficit of energy as a function of LPSP are also presented and discussed to assess the engineering design trade offs in the system components.Furthermore, a simple cost analysis has also been carried out, which indicates that for Delhi the stand-alone solar PV systems with fixed and tilted aperture arrays are better option than those with single-axis tracking aperture (with north–south oriented tracking axis) arrays. 相似文献
20.
Masaya Itoh Hideki Takahashi Takeshi Fujii Hideyuki Takakura Yoshihiro Hamakawa Yasuhiro Matsumoto 《Solar Energy Materials & Solar Cells》2001,67(1-4)
A systematic investigation has been made on annual accumulated generated PV power from different solar arrays consisting of three kinds of silicon-based solar cells. To clarify seasonal output power variations with temperature in c-Si and a-Si cells might be an important issue for the operations of PV system. It has been shown from the results that electric output power from a-Si array in summer is 20% larger than that from c-Si. On the other hand, in winter, this scene should be reverted. However, output power from c-Si array is only 5% larger than that from a-Si. The analyzed data also shows that annual accumulated electric power generated from a-Si array corresponds to 90% of its nominal efficiency in the year. While in case of c-Si array, this ratio is about 84%. 相似文献