首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thiazolidinediones are potent antidiabetic compounds, in both animal and human models, which act by enhancing peripheral sensitivity to insulin. Thiazolidinediones are high-affinity ligands for peroxisome proliferator-activated receptor-gamma, a key factor for adipocyte differentiation, and they are efficient promoters of adipocyte differentiation in vitro. Thus, it could be questioned whether a thiazolidinedione therapy aimed at improving insulin sensitivity would promote the recruitment of new adipocytes in vivo. To address this problem, we have studied the in vivo effect of pioglitazone on glucose metabolism and gene expression in the adipose tissue of an animal model of obesity with insulin resistance, the obese Zucker (fa/fa) rat. Pioglitazone markedly improves insulin action in the obese Zucker (fa/fa) rat, but doubles its weight gain after 4 weeks of treatment. The drug induces a large increase of glucose utilization in adipose tissue, where it stimulates the expression of genes involved in lipid metabolism such as the insulin-responsive GLUT, fatty acid synthase, and phosphoenolpyruvate carboxykinase genes, but decreases the expression of the ob gene. These changes are related to both an enhanced adipocyte differentiation, as shown by the large increase in the number of small adipocytes in the retroperitoneal fat pad, and a direct effect of pioglitazone on specific gene expression (phosphoenolpyruvate carboxykinase and ob genes) in mature adipocytes.  相似文献   

3.
Insulin increased 2-deoxyglucose (2-DG) uptake via the translocation of glucose transporter (GLUT) 4 to the plasma membrane fraction in rat adipocytes. The stimulatory actions of insulin were accompanied by both an increase in the immunoreactive p85 subunit of phosphatidylinositol (PI) 3-kinase in the plasma membrane fractions and PI 3-kinase activation by tyrosine phosphorylation of the p85 subunit. The beta3-adrenoceptor agonist CL316243 (CL) suppressed all the insulin actions in adenosine deaminase (ADA)-treated cells, but was without effect in non-ADA-treated cells. The inhibitory effects of CL on GLUT 4 translocation and PI 3-kinase activation were abolished by the addition of N6-phenylisopropyl adenosine. Cholera toxin treatment, which markedly increased intracellular cAMP levels, suppressed increases in the levels of GLUT 4 and PI 3-kinase in the plasma membrane fractions in response to insulin. In addition, dibutyryl (Bt2) cAMP also impaired the activation of PI 3-kinase by insulin. These results indicated that CL suppressed insulin-stimulated glucose transport under conditions where cAMP levels were markedly increased (approximately 12-fold). The inhibitory actions of PI 3-kinase activation by insulin were exerted even when cAMP, 8-bromo-cAMP, or Bt2 cAMP was added to immunoprecipitates of the p85 subunit of PI 3-kinase, after treating the cells with insulin. These results suggest that CL suppressed insulin-stimulated PI 3-kinase activity via a cAMP-dependent mechanism, at least in part, direct cAMP action in ADA-treated adipocytes, by which PI 3-kinase activation was inhibited, resulting in the decrease in GLUT 4 translocation and subsequent 2-DG uptake in response to insulin.  相似文献   

4.
Insulin induces the translocation of vesicles containing the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane in adipocytes. SNARE proteins have been implicated in the docking and fusion of these vesicles with the cell membrane. The role of Munc18c, previously identified as an n-Sec1/Munc18 homolog in 3T3-L1 adipocytes, in insulin-regulated GLUT4 trafficking has now been investigated in 3T3-L1 adipocytes. In these cells, Munc18c was predominantly associated with syntaxin4, although it bound both syntaxin2 and syntaxin4 to similar extents in vitro. In addition, SNAP-23, an adipocyte homolog of SNAP-25, associated with both syntaxins 2 and 4 in 3T3-L1 adipocytes. Overexpression of Munc18c in 3T3-L1 adipocytes by adenovirus-mediated gene transfer resulted in inhibition of insulin-stimulated glucose transport in a virus dose-dependent manner (maximal effect, approximately 50%) as well as in inhibition of sorbitol-induced glucose transport (by approximately 35%), which is mediated by a pathway different from that used by insulin. In contrast, Munc18b, which is also expressed in adipocytes but which did not bind to syntaxin4, had no effect on glucose transport. Furthermore, overexpression of Munc18c resulted in inhibition of insulin-induced translocation of GLUT4, but not of that of GLUT1, to the plasma membrane. These results suggest that Munc18c is involved in the insulin-dependent trafficking of GLUT4 from the intracellular storage compartment to the plasma membrane in 3T3-L1 adipocytes by modulating the formation of a SNARE complex that includes syntaxin4.  相似文献   

5.
Phosphatidylinositol (PI) 3-kinase is hypothesized to be a signaling element in the acute redistribution of intracellular GLUT4 glucose transporters to the plasma membrane in response to insulin. However, some receptors activate PI 3-kinase without causing GLUT4 translocation, suggesting specific cellular localization may be critical to this PI 3-kinase function. Consistent with this idea, complexes containing PI 3-kinase bound to insulin receptor substrate 1 (IRS-1) in 3T3-L1 adipocytes are associated with intracellular membranes (Heller-Harrison, R., Morin, M. and Czech, M. (1995) J. Biol. Chem. 270, 24442-24450). We report here that in response to insulin, activated complexes of IRS-1.PI 3-kinase can be immunoprecipitated with anti-IRS-1 antibody from detergent extracts of immunoadsorbed GLUT4-containing vesicles prepared from 3T3-L1 adipocytes. The targeting of PI 3-kinase to rat adipocyte GLUT4-containing vesicles using vesicles prepared by sucrose velocity gradient ultracentrifugation was also demonstrated. Insulin treatment caused a 2.3-fold increase in immunoreactive p85 protein in these GLUT4-containing vesicles while anti-p85 immunoprecipitates of PI 3-kinase activity in GLUT4-containing vesicle extracts increased to a similar extent. HPLC analysis of the GLUT4 vesicle-associated PI 3-kinase activity showed insulin-mediated increases in PI 3-P, PI 3,4-P2, and PI 3,4,5-P3 when PI, PI 4-P, and PI 4,5-P2 were used as substrates. Our data demonstrate that insulin directs the association of PI 3-kinase with GLUT4-containing vesicles in 3T3-L1 and rat adipocytes, consistent with the hypothesis that PI 3-kinase is involved in the insulin-regulated movement of GLUT4 to the plasma membrane.  相似文献   

6.
To examine the physiological role of the GLUT4/muscle-fat specific facilitative glucose transporter in regulating glucose homeostasis, we have generated transgenic mice expressing high levels of this protein in an appropriate tissue-specific manner. Examination of two independent founder lines demonstrated that high-level expression of GLUT4 protein resulted in a marked reduction of fasting glucose levels (approximately 70 mg/dl) compared to wild-type mice (approximately 130 mg/dl). Surprisingly, 30 min following an oral glucose challenge the GLUT4 transgenic mice had only a slight elevation in plasma glucose levels (approximately 90 mg/dl), whereas wild-type mice displayed a typical 2- to 3-fold increase (approximately 250-300 mg/dl). In parallel to the changes in plasma glucose, insulin levels were approximately 2-fold lower in the transgenic mice compared to the wild-type mice. Furthermore, isolated adipocytes from the GLUT4 transgenic mice had increased basal glucose uptake and subcellular fractionation indicated elevated levels of cell surface-associated GLUT4 protein. Consistent with these results, in situ immunocytochemical localization of GLUT4 protein in adipocytes and cardiac myocytes indicated a marked increase in plasma membrane-associated GLUT4 protein in the basal state. Taken together these data demonstrate that increased expression of the human GLUT4 gene in vivo results in a constitutively high level of cell surface GLUT4 protein expression and more efficient metabolic control over fluctuations in plasma glucose concentrations.  相似文献   

7.
Tumor necrosis factor-alpha (TNF alpha) is a cytokine implicated in the development of septic shock, cachexia, and other pathological states. Recent studies indicated a direct role for adipose expression of TNF alpha in obesity-linked insulin resistance and diabetes. Pioglitazone, CP-86,325 (CP), AD-5075, CS-045, ciglitazone, and englitazone are members of a new class of insulin-sensitizing thiazolidinedione derivatives with in vivo antidiabetic activities. To test whether these agents antagonize the effect of TNF alpha, 3T3-L1 cells were induced to differentiate in the presence of TNF alpha with or without thiazolidinedione derivatives. Incubation of 3T3-L1 cells with TNF alpha alone completely inhibited adipocyte conversion and expression of fatty acid-binding protein messenger RNA (mRNA). However, coincubation of TNF alpha-treated cells with CP (1 microM), AD-5075 (1 microM), pioglitazone (10 microM), or CS-045 (10 microM) blocked these effects. Long term incubation of 3T3-L1 adipocytes with a low dose of TNF alpha (50 pM) significantly decreased the levels of the adipocyte/muscle-specific glucose transporter (GLUT4) and the CCAAT enhancer-binding protein mRNAs, but did not affect expression of the ubiquitously expressed glucose transporter (GLUT1) or lipoprotein lipase mRNAs. Incubation of 3T3-L1 adipocytes with TNF alpha also inhibited insulin-stimulated 2-deoxyglucose uptake as well as expression of GLUT4 protein. Furthermore, in 3T3-L1 adipocytes, incubation with TNF alpha attenuated the expression of fatty acid-binding protein mRNA in a time- and dose-dependent manner. These inhibitory effects were partially or completely blocked by coincubation of the cells with CP. These results implicate that the insulin-sensitizing agents may exert their antidiabetic activities by antagonizing the inhibitory effects of TNF alpha.  相似文献   

8.
Adipose-tissue lipolysis (assessed from glycerol release) and glucose uptake were examined in parametrial and mesenteric adipocytes prepared from control or hyperthyroid rats in relation to changes in insulin sensitivity. Basal rates of lipolysis did not differ significantly between adipose-tissue depots. Lipolysis was maximally stimulated by noradrenaline at 1 microM, half-maximal anti-lipolytic effects of insulin were observed at approximately 11 microU/ ml insulin, and half-maximal stimulation of glucose uptake was observed at approximately 16 microU/ml insulin in adipocytes from both depots. Wortmannin caused a dose-dependent inhibition of the anti-lipolytic effect of insulin (150 microU/ml) on noradrenaline-stimulated lipolysis. Half-maximal effects of wortmannin were observed at 20-40 nM. The p70S6K inhibitor rapamycin and the mitogen-activated protein kinase kinase inhibitor PD098059 had no effects on noradrenaline-stimulated lipolysis. Hyperthyroidism increased basal rates of lipolysis and the maximal response of lipolysis to noradrenaline stimulation (3.1-fold, P < 0.001 and 2.1-fold, P < 0.05 respectively) in parametrial adipocytes. Hyperthyroidism markedly blunted the sensitivity of noradrenaline-stimulated lipolysis to half-maximal suppression by insulin in both parametrial and mesenteric adipocyte depots, and noradrenaline-stimulated lipolysis at a maximal insulin concentration remained significantly higher in adipocytes prepared from hyperthyroid rats compared with controls. Hyperthyroidism had no effect on basal and little effect on insulin-stimulated glucose uptake. Tri-iodothyronine administered at a low dose selectively influenced the anti-lipolytic action of insulin in parametrial adipocytes, and led to significantly less marked elevation in plasma non-esterified fatty acid concentrations in vivo. The results demonstrate a selective effect of hyperthyroidism to impair insulin's anti-lipolytic action, and are consistent with the operation of different downstream signalling mechanisms for the effects of insulin on adipocyte glucose transport and lipolysis.  相似文献   

9.
Electroporation of rat adipocytes with guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) elicited sizable insulin-like increases in glucose transport and GLUT4 translocation. Like insulin, GTPgammaS activated membrane phosphatidylinositol (PI) 3-kinase in rat adipocytes, but, unlike insulin, this activation was blocked by Clostridium botulinum C3 transferase, suggesting a requirement for the small G-protein, RhoA. Also suggesting that Rho may operate upstream of PI 3-kinase during GTPgammaS action, the stable overexpression of Rho in 3T3/L1 adipocytes provoked increases in membrane PI 3-kinase activity. As with insulin treatment, GTPgammaS stimulation of glucose transport in rat adipocytes was blocked by C3 transferase, wortmannin, LY294002, and RO 31-8220; accordingly, the activation of glucose transport by GTPgammaS, as well as insulin, appeared to require Rho, PI 3-kinase, and another downstream kinase, e.g. protein kinase C-zeta (PKC-zeta) and/or protein kinase N (PKN). Whereas insulin activated both PKN and PKC-zeta, GTPgammaS activated PKN but not PKC-zeta. In transfection studies in 3T3/L1 cells, stable expression of wild-type Rho and PKN activated glucose transport, and dominant-negative forms of Rho and PKN inhibited insulin-stimulated glucose transport. In transfection studies in rat adipocytes, transient expression of wild-type and constitutive Rho and wild-type PKN provoked increases in the translocation of hemagglutinin (HA)-tagged GLUT4 to the plasma membrane; in contrast, transient expression of dominant-negative forms of Rho and PKN inhibited the effects of both insulin and GTPgammaS on HA-GLUT4 translocation. Our findings suggest that (a) GTPgammaS and insulin activate Rho, PI 3-kinase, and PKN, albeit by different mechanisms; (b) each of these signaling substances appears to be required for, and may contribute to, increases in glucose transport; and (c) PKC-zeta may contribute to increases in glucose transport during insulin, but not GTPgammaS, action.  相似文献   

10.
Recent observations suggest that insulin increases cellular levels of activated, GTP-bound Ras protein. We tested whether the acute actions of insulin on hexose uptake and glucose-transporter redistribution to the cell surface are mimicked by activated Ras. 3T3-L1 fibroblasts expressing an activated mutant (Lys-61) N-Ras protein exhibited a 3-fold increase in 2-deoxyglucose uptake rates compared with non-transfected cells. Insulin stimulated hexose uptake by approximately 2-fold in parental fibroblasts but did not stimulate hexose uptake in the N-Ras61K-expressing fibroblasts. Overexpression of N-Ras61K also mimicked the large effect of insulin on 2-deoxyglucose transport in 3T3-L1 adipocytes, and again the effects of the two agents were not additive. Total glucose transporter protein (GLUT) 1 was similar between parental and N-Ras61K-expressing 3T3-L1 fibroblasts or adipocytes, whereas total GLUT-4 protein was actually lower in the N-Ras61K-expressing compared with parental adipocytes. However, expression of N-Ras61K in 3T3-L1 adipocytes markedly elevated both GLUT-1 and GLUT-4 in plasma membranes relative to intracellular membranes, and insulin had no further effect. These modulations of glucose transporters by N-Ras61K expression are not due to upstream regulation of insulin receptors because receptor tyrosine phosphorylation and association of phosphatidylinositol 3-kinase with tyrosine-phosphorylated proteins were unaffected. These results show that activated Ras mimics the actions of insulin on membrane trafficking of glucose transporters, consistent with the concept that Ras proteins function as intermediates in this insulin signaling pathway.  相似文献   

11.
12.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCzeta and PKClambda) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKClambda in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKClambda (lambdaKD or lambdaDeltaNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKClambda, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by lambdaKD or lambdaDeltaNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKClambda was approximately 50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKClambda mutant that lacks the pseudosubstrate domain (lambdaDeltaPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of lambdaDeltaPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKClambda. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKClambda pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

13.
GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.  相似文献   

14.
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.  相似文献   

15.
The domains responsible for the fructose specificity of GLUT5 were investigated by creating chimeras of GLUT5 with the selective glucose transporter GLUT3, which were expressed in Xenopus oocytes. 3-O-Methylglucose uptake of chimeric GLUT3-5 (M11; GLUT3 to the 11th transmembrane domain, GLUT5 to the carboxyl end) was similar to that of GLUT3, while fructose was not transported. Fructose uptake of chimeric GLUT5-3 (M3-5) to -5 (GLUT3 from the 3rd to 5th transmembrane domains, the rest GLUT5) was similar to that of GLUT5; no glucose was transported. Four chimeras transported neither fructose nor glucose: GLUT3-5 (M5; GLUT3 to the 5th transmembrane domain, GLUT5 to the carboxyl end), GLUT5-3 (M2; GLUT5 to the 2nd transmembrane domain, the rest GLUT3), GLUT5-3 (M3-11) to -5 (GLUT3 between the 3rd and 11th transmembrane domains, the rest GLUT5) and GLUT5-3 (M3-5) to -5-3 (M11; GLUT3 from the 3rd to 5th transmembrane domains and after the 11th transmembrane domain, the rest GLUT5). They, nevertheless, induced full-size proteins that were transported to the cell surface, as demonstrated by exofacial labeling with biotin. To conclude, the GLUT5 domain from the amino-terminus to the third transmembrane domain and that between the 5th and 11th transmembrane stretches seem to be necessary for fructose uptake.  相似文献   

16.
Mechanisms of decreased insulin responsiveness of large adipocytes   总被引:1,自引:0,他引:1  
We have studied glucose metabolism using large adipocytes isolated from older, fatter rats (greater than 12 months old, greater than 550 g), and smaller cells obtained from younger, leaner animals (4-5 weeks old, 126-160 g). 2-Deoxyglucose uptake was equal in large and small adipocytes, while insulin mediated oxidation of [1(-14)C]glucose was greatly diminished (7-fold) in large cells. Thus, the defect in oxidation of the number one carbon atom of glucose (pentose pathway oxidation) is distal to the 2-deoxyglucose uptake system. However, this intracellular defect is not present in all pathways of glucose oxidation as demonstrated by the finding that [6(-14)C]glucose oxidation was comparable in small and large adipocytes. Thus, the number six carbon atom of glucose is oxidized normally indicating that glycolytic and Krebs cycle activity is intact in the large adipocyte. Furthermore, in large adipocytes conversion of glucose to total lipid was normal in the basal state and moderately decreased at high glucose concentrations in the presence of insulin (up to 35%). When the radioactivity in total lipids was fractionated, a severe decrease in glucose incorporation into fatty acids was found in the large cells. Total glucose uptake was also measured, and found to be 10-50% decreased in large cells, suggesting that the decreases in pentose pathway glucose metabolism and conversion to fatty acids lead to accumulation of free intracellular glucose with glucose efflux and a decrease in net glucose uptake. Comparing the 2-deoxyglucose uptake and glucose oxidation data showed that insulin promotes [6(-14)C]glucose oxidation by stimulating the processes responsible for 2-deoxyglucose uptake whereas insulin promotes [1(-14)C]glucose oxidation both by increasing these processes and by increasing the activity of the C-1 oxidative pathway. In conclusion: 1) the 2-deoxyglucose uptake system of the large adipocyte is basically intact, 2) [1(-14)C]glucose oxidation is markedly decreased in large adipocytes, while [6(-14)C]glucose oxidation is normal, and 3) in comparing small and large adipocytes, it appears that it is the ability of insulin to enhance glucose oxidation via the pentose pathway and to promote glucose incorporation into fatty acids which is most impaired in large adipocytes.  相似文献   

17.
SNARE proteins have been implicated in the insulin-induced translocation of vesicles containing the GLUT4 glucose transporter to the plasma membrane of adipocytes. The role of the target SNARE SNAP-25 or its homologs in this process was investigated by screening a mouse adipocyte cDNA library with rat SNAP-25 and human SNAP-23 cDNA probes. Both positive clones isolated encoded a protein with 87% sequence identity to human SNAP-23, and which was therefore designated mouse SNAP-23. Immunoblot and immunofluorescence analyses revealed that SNAP-23 is located predominantly in the plasma membrane of 3T3-L1 adipocytes incubated in the absence or presence of insulin. Of syntaxins 1 to 5, SNAP-23 bound with the highest affinity to syntaxins 1 and 4 in the yeast two-hybrid system. Expression of SNAP-23, syntaxin 4, and the syntaxin-binding protein Munc 18c in COS cells revealed that Munc18c reduced the amount of SNAP-23 bound to syntaxin 4 in a concentration-dependent manner. These results suggest that the binding of SNAP-23 to syntaxin 4 is inhibited by Munc18c in adipocytes.  相似文献   

18.
Insulin action and GLUT4 expression were examined in adipose tissue of severely obese premenopausal women undergoing gastrointestinal surgery. Fat samples were taken from three different anatomical regions: the subcutaneous abdominal site, the round ligament (deep abdominal properitoneal fat), and the greater omentum (deep abdominal intraperitoneal fat). The stimulatory effect of insulin on glucose transport and the ability of the hormone to inhibit lipolysis were determined in adipocytes isolated from these three adipose depots. Insulin stimulated glucose transport 2-3 times over basal rates in all adipocytes. However, round ligament adipose cells showed a significantly greater responsiveness to insulin when compared to subcutaneous and omental adipocytes. Round ligament fat cells also displayed the greatest sensitivity and maximal antilipolytic response to insulin. We also investigated whether regional differences in fat cell insulin-stimulated glucose transport were linked to a differential expression of the GLUT4 glucose transporter. GLUT4 protein content in total membranes was 5 and 2.2 times greater in round ligament adipose tissue than in subcutaneous and omental fat depots, respectively. Moreover, GLUT4 mRNA levels were 2.1 and 3 times higher in round ligament than in subcutaneous or omental adipose tissues, respectively. Adipose tissue GLUT4 protein content was strongly and negatively associated (r = -0.79 to -0.89, p < 0.01) with the waist-to-hip ratio but not with total adiposity. In conclusion, these results demonstrate the existence of site differences in adipose tissue insulin action in morbidly obese women. The greater insulin effect on glucose transport in round ligament adipocytes was associated with a higher expression of GLUT4 when compared to subcutaneous abdominal and omental fat cells. Moreover, despite the regional variation in GLUT4 expression, an increased proportion of abdominal fat was found to be associated with lower levels of GLUT4 in all adipose regions investigated.  相似文献   

19.
We examined several aspects of glucose transport reconstituted in liposomes, with emphasis on transporters of rat heart (mostly GLUT4) compared to those of human erythrocytes (GLUT1), and on effects of agents that modulate transport in intact cells. Several types of samples gave higher reconstituted activity using liposomes of egg lipids rather than soybean lipids. Diacylglycerol, proposed to activate transporters directly as part of the mechanism of insulin action, increased the intrinsic activity of heart transporters by only 25%, but increased the size of the reconstituted liposomes by 90%. The dipeptide Cbz-Gly-Phe-NH2 inhibited GLUT4 with a Ki of 0.2 mM, compared to 2.5 mM for GLUT1, which explains its preferential inhibition of insulin-stimulated glucose transport in adipocytes. Verapamil, which inhibits insulin- and hypoxia-stimulated glucose transport in muscle, had no effect on reconstituted transporters. Heart transporters had a higher Km for glucose uptake (13.4) than did GLUT1 (1.6 mM), in agreement with a recent study of GLUT1 and GLUT4 expressed in yeast and reconstituted in liposomes. Transporters reconstituted from heart and adipocytes were 40-70% inactivated by external trypsin, suggesting the presence of trypsin-sensitive sites on the cytoplasmic domain of GLUT4. NaCl and KCl both reduced reconstituted transport activity, but KCl had a much smaller effect on the size of the liposomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号