首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Typical lubricants for magnetic hard disks comprise the central perfluoropolyether section and the short hydrocarbon end groups bearing hydroxyl unit(s). It had been shown earlier that chemical bonding of these lubricants to the carbon overcoat of disks involves (1) dangling bonds shielded inside the carbon, (2) transfer of the hydrogen atom of the hydroxyl unit to a dangling bond site, and (3) attachment of the remaining alkoxy system, R–CF2–CH2–O·, to the carbon surface as a pendant ether unit. Dangling bonds at or near the surface react immediately with H2O or O2 in the atmosphere. It follows that, in order to bond, the hydrocarbon end group must move into crevices of the carbon film. It was postulated that the bonding rate would depend on the length of the hydrocarbon end-group, –(CH2) n –OH. The longer the hydrocarbon sector is, the faster and the more extensively the bonding would proceed. Bonding rates were examined for a set of samples differing only in the dimension of the hydrocarbon end-group. Results clearly in accordance with the postulate were obtained. The sample set included two novel lubricants, D-2TX2 and D-2TX4, with the following end-groups, –O–CF2–CH2–O–(CH2) n=2,4–OH. Excellent bonding rate, coverage, and potential anticorrosion property were revealed for these lubricants.  相似文献   

2.
The self-lubricating composites Ni3Al–BaF2–CaF2–Ag–Cr, which have varying fluoride contents, were fabricated by the powder metallurgy technique. The effect of fluoride content on the mechanical and tribological properties of the composites was investigated. The results showed that an optimal fluoride content and a balance between lubricity and mechanical strength were obtained. The Ni3Al–6.2BaF2–3.8CaF2–12.5Ag–10Cr composite showed the best friction coefficients (0.29–0.38) and wear rates (4.2 × 10−5–2.19 × 10−4 mm3 N−1 m−1) at a wide temperature range (room temperature to 800°C). Fluorides exhibited a good reduced friction performance at 400 and 600°C. However, at 800°C, the formation of BaCrO4 on the worn surface due to the tribo-chemical reaction at high temperatures provided an excellent lubricating property.  相似文献   

3.
Ni3Al–Ag–BaF2/CaF2–W composites were fabricated by the powder metallurgy route, and their tribological properties over a wide temperature range, starting from room temperature up to 800 °C, were investigated. The Ni3Al matrix composite with 15 wt% BaF2/CaF2 exhibited a favorable friction coefficient (range 0.3–0.4) and wear rate (0.2–6.2 × 10−4mm3 N−1 m−1). The formation of BaWO4 and CaWO4 with lubricity on the worn surface due to a tribo-chemical reaction at high temperatures provided excellent lubricating properties. The low friction coefficient over a broad temperature range could be attributed to the synergistic effect of Ag, BaF2/CaF2, BaWO4, and CaWO4.  相似文献   

4.
Molecular dispositions of Z-dol (linear perfluoropolyether with hydroxyl termini, –O–CF2–CH2–OH) applied over the carbon overcoat of magnetic hard disks are often depicted by an arrangement based on the hydrogen bonding interaction between the hydroxyl ends and some polar units of the carbon surface. The hydrogen bonding interaction is weak. The arrangement based on this mechanism is attained rapidly, but is slowly replaced (if partially) by a bona fide chemical bond. The issue of the exact nature of this chemical bond has been left unanswered in most of the reports. Past works deemed to have explored and elucidated the identity of the bond in question are gathered, reviewed and deductively presented. The review, we believe, clearly shows that the bonding in question involves (1) dangling bonds shielded within the sputter-deposited carbon, (2) transfer of the hydrogen atom of the hydroxyl unit of Z-dol to the dangling bond site, and (3) attachment of the remaining alkoxy system, Z–O–CF2–CH2–O•, to the carbon surface as a pendant ether unit. The Z-dol moiety thus attached is held by a bona fide chemical bond, and cannot be replaced by water molecules nor removed by solvent extraction.  相似文献   

5.
Self-lubricating ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have been fabricated by spark plasma sintering (SPS) method. The tribological properties have been evaluated using a high-temperature friction and wear tester at room temperature and 760 °C in dry sliding against alumina ball. The composites exhibit distinct improvements in effectively reducing friction and wear, as compared to the unmodified ZrO2(Y2O3)–Al2O3 ceramics. The ZrO2(Y2O3)–Al2O3–Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) composites have great low and stable friction coefficients of less than 0.15 and wear rates in the order of 10− 6mm3/Nm at 760 °C. Delamination is considered as the dominating wear mechanism of the composites at room temperature. At elevated temperature, the formation and effective spreading of Ba x Sr1−x SO4 (x = 0.25, 0.5, 0.75) lubricating films during sliding play an important role in the reduction of the friction and wear.  相似文献   

6.
MoS2–Sb2O3–C composite films exhibit adaptive behavior, where surface chemistry changes with environment to maintain the good friction and wear characteristics. In previous work on nanocomposite coatings grown by PVD, this type of material was called a “chameleon” coating. Coatings used in this report were applied by burnishing mixed powders of MoS2, Sb2O3 and graphite. The solid lubricant MoS2 and graphite were selected to lubricate over a wide and complementary range including vacuum, dry air and humid air. Sb2O3 was used as a dopant because it acts synergistically with MoS2, improving friction and wear properties. The MoS2–Sb2O3–C composite films showed lower friction and longer wear life than either single component MoS2 or C film in humid air. Very or even super low friction and long wear-life were observed in dry nitrogen and vacuum. The excellent tribological performance was verified and repeated in cycles between humid air and dry nitrogen. The formation of tribo-films at rubbing contacts was studied to identify the lubricating chemistry and microstructure, which varied with environmental conditions. Micro-Raman spectroscopy and Auger electron spectroscopy (AES) were used to determine surface chemistry, while scanning electron microscopy and transmission electron microscopy were used for microstructural analysis. The tribological improvement and lubrication mechanism of MoS2–Sb2O3–C composite films were caused by enrichment of the active lubricant at the contact surface, alignment of the crystal orientation of the lubricant grains, and enrichment of the non lubricant materials below the surface. Sb2O3, which is not lubricious, was covered by the active lubricants (MoS2 – dry, C – humid air). Clearly, the dynamics of friction during environmental cycling cleaned some Sb2O3 particles of one lubricant and coated it with the active lubricant for the specific environment. Mechanisms of lubrication and the role of the different materials will be discussed.  相似文献   

7.
A Fe-based composite coating reinforced by multiple TiB2–TiC–Al2O3 ceramic particles was developed by gas tungsten arc welding (GTAW) melting process. Mixture of aluminum (Al), boron carbide (B4C), and titanium dioxide (TiO2) powders was used as precursors, and as a consequence TiB2–TiC–Al2O3 multiple ceramic particles were in situ synthesized during GTAW melting process. Microstructural investigations showed that TiB2 particles exhibit a blocky morphology, TiC particles are of flower-like shape, and the Al2O3 particles exist as small black dots and located in the core of reinforced particles. The hardness and wear resistance of the coatings increased drastically in comparison with that of the substrate.  相似文献   

8.
Spada  F.E.  Basov  D. 《Tribology Letters》2000,8(2-3):179-186
Reflection–absorption Fourier transform infrared (FTIR) techniques were used to monitor thin layers of hydroxyl-terminated perfluoropolyether lubricant (Fomblin ZDOL) for molecular changes caused by long exposures to dc electric fields with intensities in the range 3–6 × 104 V/cm. A new absorption band appears in the 1720–1640 cm−1 region of some field-exposed specimens. The new spectral feature is attributed to the presence of C=O, a functional group not present in the ZDOL chemical structure but commonly found in perfluoropolyether degradation products. The peak position of the carbonyl absorption band indicates that hydrogenated carbon is present at the α-position. The presence of hydrogenated --carbons suggests that structural modifications occur via a mechanism that primarily involves the –CH2–OH functional endgroup, rather than the more commonly proposed bond cleavage at the –O–CF2–O– acetal groups in perfluoropolyether lubricants having no polar endgroups. These results suggest that slow but cumulative lubricant degradation may occur when strong electric fields are present at the head-disk interface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The influence of nano- and microfillers, including nanofibers and powder of Al2O3 and aluminum oxyhydrides AlO(OH) on the mechanical and tribological characteristics of ultrahigh-molecular-weight polyethylene (UHMWPE) is studied. It is found that modification of UHMWPE with nanofibers of Al2O3 within 0.1–0.5 wt % ensures a considerable increase in its hardness and multifold increase in its wear resistance. Modification with ultradisperse powders of Al2O3 (200–500 nm) in the same amounts has an insignificant effect on the polymer characteristics. Filling of UHMWPE with micron-sized particles (3–50 μm) in amounts of 20 wt % results in increased wear resistance of the original polymer, comparable with the wear resistance at low nanofiber content. X-ray diffraction analysis, IR spectroscopy, and electron microscopy are used to show that incorporation of Al2O3 nanofibers into UHMWPE results in the formation of a fundamentally different supermolecular structure in comparison with the use of microfillers.  相似文献   

10.
Fe–Mo-based self-lubricating composites were prepared by a powder metallurgical hot-pressing method. The tribological properties of Fe–Mo-based composites with varied CaF2 contents at high temperature were evaluated, and the effect of glaze films on the friction and wear characteristics of composites were analyzed. The results show that the introduction of CaF2 into Fe–Mo alloys improved the mechanical properties, and the best tribological properties of Fe–Mo–CaF2 composites were achieved at the CaF2 content of 8 wt% at both room temperature and 600 °C. The worn surface of Fe–Mo–CaF2 composite at 600 °C is characterized to plastic deformation and slight scuffing, and the improved tribological properties are attributed to the formation of lubricious glaze film that composed of high-temperature lubricants CaMoO4 and CaF2 on the worn surface of the composites.  相似文献   

11.
The electrical resistivity of sinter dusts generated from the steel industry and coal fly ash from the coal power plant has been investigated using the high voltage conductivity cell based on JIS B 9915 as a function of temperature and water content. Dust characterization such as the chemical composition, size distribution, atomic concentration, and surface structure has been conducted. Major constituents of sinter dusts were Fe2O3 (40–74.5%), CaO (6.4–8.2%), SiO2 (4.1–6.0%), and unburned carbon (7.0–14.7%), while the coal fly ash consisted of mainly SiO2 (51.4%), AI2O3 (24.1%), and Fe2O3 (10.5%). Size distributions of the sinter dusts were bi-modal in shape and the mass median diameters (MMD) were in the range of 24.7–137μm, whereas the coal fly ash also displayed bi-modal distribution and the MMD of the coal fly ash was 35.71 μm. Factors affecting resistivity of dusts were chemical composition, moisture content, particle size, gas temperature, and surface structure of dust. The resistivity of sinter dusts was so high as 1015 ohm cm at 150 °C that sinter dust would not precipitate well. The resistivity of the coal fly ash was measured 1012 ohm cm at about 150 °C. Increased water contents of the ambient air lowered the dust resistivity because current conduction was more activated for absorption of water vapor on the surface layer of the dust.  相似文献   

12.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

13.
In the current study, TiN–MoS x composite coatings were deposited by co-sputtering of MoS2 and Ti targets under a mixture of Ar and N2 gas environment using pulsed DC closed-field unbalanced magnetron sputtering. The tribological response of TiN–MoS x composite coatings was studied against two different counter bodies: cemented carbide (WC–6% Co) ball and pin made of aluminium alloy (AlSiMg). First, the effect of substrate bias was studied on tribological properties using cemented carbide ball. Lowest coefficient of friction in the range of 0.03–0.04 was obtained for the specimen deposited at a substrate bias of −60 V. Wear coefficient was also found to be minimum for the same specimen. Coatings were further deposited at an optimum bias of −60 V in order to vary MoS x content of TiN–MoS x composite coating. Effect of variation of chemical composition of the coating was then studied on tribological performance of the coating against aluminium alloy counterface. Excellent anti-sticking property of MoS x was found to have enabled the TiN–MoS x composite coating to achieve considerably low coefficient of friction against aluminium alloy. It was shown that with optimum MoS x content of TiN–MoS x composite coating, it was possible to attain as low coefficient of friction as 0.09 against aluminium alloy even under normal atmospheric condition.  相似文献   

14.
This paper presents an experimental study correlating frictional behavior with in situ voltammetry for a unidirectional sliding contact between a hemispherical tipped alumina probe and a flat rotating copper counterface (maximum Hertzian contact pressure of 68 MPa and sliding speed of 10 mm/s). The contact was immersed in an aqueous 0.1 M Na2CO3 solution (pH ∼11) where the copper counterface acted as the working electrode in a potentiostat controlled three-electrode cell; a coiled Pt wire was used as the counter electrode and a saturated calomel electrode (SCE) as the reference. Clear and reproducible trends were found between friction coefficient and published data suggesting the onset of particular redox reactions, graphically presented in a frictional voltammetry plot. At anodic potentials primarily associated with the formation of copper(I) oxide (Cu2O) (V vs SCE ∼−0.25), the measured friction coefficient was in the range μ ∼0.4–0.5. At cathodic potentials primarily associated with the formation of CuO, Cu(OH)2, and CuCO3 (V vs SCE ∼−0.10), the friction coefficient transitions to the range μ ∼0.7–1.0. At sustained cathodic potentials associated with reduction of the native copper oxide, Cu2O, (V vs SCE ∼−0.65), the friction coefficient is observed to fluctuate between μ ∼0.2 and 0.5, arguably a result of exposure of bare copper due to non-uniform reduction (fractional coverage) of Cu2O.  相似文献   

15.
Disk lubricant additives A20H and C2 are Fomblin Z type perfluoropolyether with the hydroxyl end-group, –O–CF2–CH2–OH, at one end, and the cyclo-triphosphazene end-group, R5(PN)3–O–, at the other end. Here, R is an m-trifluoromethyl-phenoxy group for A20H and a trifluoroethoxy group for C2. These additives were examined for miscibility with benzene, spin-off rate, water contact angle, and the diffusion rate over the carbon overcoat. It is revealed that A20H adheres to the carbon overcoat spontaneously. The attractive interaction arises from the charge–transfer type interaction between the aromatic rings of the phosphazene end and the graphitic regime of the carbon overcoat. No spontaneous adherence occurs between the lubricant C2 and the carbon overcoat. A TOF-SIMS study of disks coated with A20H and C2, respectively, with and without subsequent curing by short-UV (185 nm) was performed. It is revealed: (1) if presented with a low energy electron, the phenoxy groups of A20H readily undergo the dissociative electron capture, while the trifluoroethoxy group does not, and (2) photoelectrons generated by short-UV have little kinetic energy and the electron capture occurs only if an electrophilic molecular sector is in intimate contact with the carbon. Thus, in the case of disks coated with A20H, UV-curing results in detachment of a phenoxy group in contact with the carbon, generation of a radical center at the phosphorus atom and subsequent formation of a bona fide chemical bond between the phosphor and the carbon overcoat. No reaction of consequence occurs when disks coated with C2 are irradiated with short-UV.  相似文献   

16.
The rate of material removal during fixed abrasive lapping is a function of friction coefficient, the surface tension of the lubricant and of the substrate, and the contact angles between the interfaces. In this study, the authors measured the surface energies of materials typically found in thin film magnetic recording heads using contact angle measurements and the Lifshitz–van der Waals acid/base approach. The different materials tested were NixFey, Al2O3, and Al2O3-TiC. Sample preparation procedures were also considered. The chemical used to wash the surface was observed to affect the measured substrate surface energies. Surface energy values for samples washed with either acetone or hexane showed comparable results. The NixFey gave the highest measured surface energy (46.3–48.8 mJ m−2) followed by Al2O3 (44.1–45.3 mJ m−2) and Al2O3-TiC (43.3–45.3 mJ m−2). In contrast, the oil-washed samples measured generally lower surface energy values. The study characterized the interaction of two lubricant types against the three materials. The oil-based lubricant spreads completely on oil-washed samples mainly because of the low surface tension of the oil (22.0 mJ m−2) and did not show measurable contact angles. In comparison, the water-soluble lubricant ethylene glycol, due to its higher surface tension (48.0 mJ m−2), formed higher contact angles ranging from 47.2 to 59.6° on the different substrates.  相似文献   

17.
We have investigated the resistance of a novel end-functionalized perfluoropolyether (PFPE) lubricant film to slider–disk interactions caused by low-flying sliders. The PFPE lubricant is based on the CF2CF2CF2O main chain monomer unit. Both slider–disk interactions and the formation of lubricant moguls are significantly reduced compared to the Fomblin Z backbone, (CF2O) p –(CF2CF2O) q . These results are interpreted on the basis of ab initio quantum chemical computations that show that the barrier to internal rotation about the C–O bond in the CF2CF2CF2O monomer unit is significantly larger than in the CF2O monomer unit that is bordered by another CF2O monomer unit, ~8 kcal/mol compared to <2 kcal/mol, respectively. It is proposed that main chains containing CF2O monomer units will be very flexible and hence their physical properties will be more sensitive to adhesive and cohesive interactions, while main chains containing CF2CF2O and CF2CF2CF2O monomer units will be comparatively stiffer and hence their physical properties will be less sensitive to adhesive and cohesive interactions.  相似文献   

18.
A high-temperature self-lubricating composite NiAl–Cr–Mo–CaF2 was fabricated using the powder metallurgy technique, and the tribological behavior of the composite at a wide range of temperatures (room temperature to 1000 °C) was investigated. The results showed that the composite had a favorable friction coefficient of about 0.2 and an excellent wear resistance of about 1 × 10−5 mm3N−1m−1 at the high temperatures tested (800 and 1000 °C). The excellent self-lubricating performance was attributed to the formation of the glaze film on the worn surface consisting mainly of CaCrO4 and CaMoO4 as high-temperature solid lubricants.  相似文献   

19.
Eddy-current parameterf 0 of the N26T3 steel has been studied as a function of both the aging temperatureT ag=20–800°C and the time τ of exposure to a constant temperature of 550 and 600°C up to 6h. In the initial state, the steel had two phases: (1) cooling-induced martensite+austenite (α+γ) or (2) strain-induced martensite+austenite (α′+γ). The parameterf 0 drops monotonically as τ increases, and this drop is the faster, the higherT ag. The parameterf 0 changes nonmonotonically with the aging temperature. In addition to the initial two-phase structures, the one-phase γ structure has also been studied. The parameterf 0 grows monotonically with the plastic cold strain and changes nonmonotonically with the aging temperature (20–800°C). Observed changes inf 0 have been explained.  相似文献   

20.
Friction and wear properties of rice husk ceramics under dry condition   总被引:1,自引:0,他引:1  
The friction and wear behaviors of rice husk (RH) ceramics, prepared by carbonizing the mixture of rice husk and phenol resin at 900 °C in N2 gas environment, sliding against high carbon chromium steel (JIS SUJ2), austenitic stainless steel (JIS SUS304), and Al2O3 under dry condition were investigated using a ball-on-disk tribometer. The test results show that the friction coefficient of RH ceramics takes very low values 0.05–0.08 and 0.06–0.11 sliding against SUJ2 and SUS304, respectively, and much higher values around 0.14–0.23 against Al2O3. It was also shown that SUJ2 provides the lowest specific wear rate values below 10−9 mm2/N, while, those of SUS304 and Al2O3 mostly stayed between 10−9 to 10−8 mm2/N range. The worn surfaces of counterparts were observed with optical microscopy and analyzed using cross-sectional transmission electron microscopy with energy dispersive X-ray spectroscopy and electron diffraction. It was suggested that the tribological behaviors of RH ceramics are closely related with the formation of a transferred film, consisted of amorphous silica and carbon particles, on a counterpart surface. The transferred film was formed readily on SUJ2 balls, whereas for SUS304 the presence of the film was subject of the sliding conditions. Moreover, formation of the transferred film could not be detected on Al2O3 counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号