首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heavy metal concentrations were measured in airborne dust collected at three sites with different traffic densities from August 2001 to July 2002 in the Frankfurt am Main area. Bulk samples of particulate matter (PM) with an aerodynamic equivalent diameter of <22 microm were collected on cellulose nitrate filters using air filtration devices. Fractionated samples of PM with an aerodynamic equivalent diameter of <10 microm were collected using an eight-stage Andersen impactor. Pb, Cd, Mn, Ni, Zn, V, As, Sb, Cu, Cr, Co, and Ce were determined by inductively coupled plasma sector field mass spectrometry, Pt and Rh were determined by adsorptive voltammetry, and Pd was determined by total reflection X-ray fluorescence analysis. The results show that the highest airborne heavy metal concentrations occurred at the main street with a large volume of traffic. With the exception of Co, V, Ce, and Mn, the heavy metals had an elevated enrichment factor compared to their concentrations in the continental crust. The main street site was especially contaminated with Sb, Zn, Cu, V, and Ni. Motor vehicles are the likely source of emissions. With the exception of Cr, Cu, and Zn, most of the airborne heavy metal concentrations determined for impactor samples deviate slightly from the results for total airborne dust. Heavy metal particle size distributions can be divided into three groups. For metals such as As, Cd, Pb, and V, the main fraction can be found in fine particles with a diameter of <2.1 microm, whereas Ce, Cr, Co, and Ni occur mainly in coarse particles with a diameter of >2.1 microm. Cu, Mn, Sb, Zn, Pt, Pd, and Rh occur in high concentrations in the medium range of the impactor stages (particle diameters of 1.1-4.7 microm). Metal concentrations in fine dust particles are needed to assess the human health risks of their inhalation.  相似文献   

2.
Road traffic has been highlighted as a major source of metal emissions in urban areas. Brake linings and tires are known emission sources of particulate matter to air; the aim of the current study was to follow the development of metal emissions from these sources over the period 1995/ 1998-2005, and to compare the emitted metal quantities to other metal emission sources. Stockholm, Sweden was chosen as a study site. The calculations were based on material metal concentrations, traffic volume, particle emission factors, and vehicle sales figures. The results for metal emissions from brake linings/tire tread rubber in 2005 were as follows: Cd 0.061/0.47 kg/year, Cu 3800/5.3 kg/year, Pb 35/3.7 kg/year, Sb 710/0.54 kg/year, and Zn 1000/4200 kg/ year. The calculated Cu and Zn emissions from brake linings were unchanged in 2005 compared to 1998, indicating that brake linings still remain one of the main emission sources for these metals. Further, brake linings are a source of antimony. In contrast, Pb and Cd emissions have decreased to one tenth compared to 1998. The results also showed that tires still are one of the main sources of Zn and Cd emissions in the city.  相似文献   

3.
The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of the relative quantities. PbS and ZnS were found to be the major phases in PM10 generated by the smelting facilities with PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, Pb metal, and ZnO as minor phases. The slag waste PM10 was found to contain some amounts of PbCO3, PbSO4 x PbO, and ZnFe2O4 phases. The large heterogeneity at the level of the individual particle generates severe overlap of chemical information even at the microm scale using electron microprobe (WDS) and Raman microprobe techniques. Fortunately, scanning Raman microspectrometry combined with SIMPle-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) performed the PM10 speciation at the level of individual particles. The speciation of major Pb, Zn, and Cd compounds of PM10 stack emissions and wind blown dust of ores and recycled materials were found to be PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, PbO, metallic Pb, ZnS, ZnO, and CdS. The PM10 dust of slag waste was found to contain PbCO3, Pb(OH)2 x 2PbCO3, PbSO4 x PbO, and ZnS, while PM10-bound Pb, Zn of the top-soils contain Pb5(PO4)3Cl, ZnFe2O4 as well as Pb(II) and Zn(II) compounds adsorbed on Fe(III) oxides and in association with clays.  相似文献   

4.
A special sampling system for measurements of size-segregated particles directly at the source of emission was designed and constructed. The central part of this system is a low-pressure cascade impactor with 10 collection stages for the size ranges between 15 nm and 16 microm. Its capability and suitability was proven by sampling particles atthe stack (100 degrees C) of a coal-fired power station in Slovenia. These measurements showed very reasonable results in comparison with a commercial cascade impactor for PM10 and PM2.5 and with a plane device for total suspended particulate matter (TSP). The best agreement with the measurements made by a commercial impactor was found for concentrations of TSP above 10 mg m(-3), i.e., the average PM2.5/PM10 ratios obtained by a commercial impactor and by our impactor were 0.78 and 0.80, respectively. Analysis of selected elements in size-segregated emission particles additionally confirmed the suitability of our system. The measurements showed that the mass size distributions were generally bimodal, with the most pronounced mass peak in the 1-2 microm size range. The first results of elemental mass size distributions showed some distinctive differences in comparison to the most common ambient anthropogenic sources (i.e., traffic emissions). For example, trace elements, like Pb, Cd, As, and V, typically related to traffic emissions, are usually more abundant in particles less than 1 microm in size, whereas in our specific case they were found at about 2 microm. Thus, these mass size distributions can be used as a signature of this source. Simultaneous measurements of size-segregated particles at the source and in the surrounding environment can therefore significantly increase the sensitivity of the contribution of a specific source to the actual ambient concentrations.  相似文献   

5.
The abundance and the behavior of metals (Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Cd, Sn, Ba, Pt, Hg, and Pb) and ions (Na+ K+ Mg2+ Ca2+, NH4+, Cl-, NO3-, SO4(2-), PO4(3-), and oxalate) in size-fractionated atmospheric particulate matter (PM) were studied in the U. K. and Ireland at four observation sites simulating extreme degrees of vehicular-traffic influence in the environment. Trace metals in urban PM showed distinct types of size-fractionated behavior depending on the particle sources from which they originate. In coarse PM (1.5 < Dp < 3.0 microm) the concentrations of copper, barium, and iron correlated closely across over 2 orders of magnitude in urban air, which is seen as evidence that major portions of transition metals (Cu, Ba, Fe, and Mn) are released through abrasive vehicular emissions, particularly the wear of brake linings. Further results are strongly indicative of a decoupling of coarse iron and calcium, the former arising predominantly from vehicles, the latter from soil resuspension. In fine PM (Dp < 0.5 microm), several combustion and secondary sources of particulates were identified, but these were much less unique in terms of elemental fingerprints. An analysis of the water solubility of trace metals yielded that solubility varies considerably with element and, to a lesser extent, with particle size. Notable differences were found to the elemental water solubilities determined in previous work, partially explained by differences in extraction procedures.  相似文献   

6.
This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.  相似文献   

7.
Emissions of metals associated with motor vehicle roadways   总被引:3,自引:0,他引:3  
Emissions of metals and other particle-phase species from on-road motor vehicles were measured in two tunnels in Milwaukee, WI during the summer of 2000 and winter of 2001. Emission factors were calculated from measurements of fine (PM2.5) and coarse (PM10) particulate matter at tunnel entrances and exits, and effects of fleet composition and season were investigated. Cascade impactors (MOUDI) were used to obtain size-resolved metal emission rates. Metals were quantified with inductively-coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence (XRF). PM10 emission rates ranged from 38.7 to 201 mg km(-1) and were composed mainly of organic carbon (OC, 30%), inorganic ions (sulfate, chloride, nitrate, ammonium, 20%), metals (19%), and elemental carbon (EC, 9.3%). PM10 metal emissions were dominated by crustal elements Si, Fe, Ca, Na, Mg, Al, and K, and elements associated with tailpipe emissions and brake and tire wear, including Cu, Zn, Sb, Ba, Pb, and S. Metals emitted in PM2.5 were lower (11.6% of mass). Resuspension of roadway dust was dependent on weather and road surface conditions, and increased emissions were related to higher traffic volumes and fractions of heavy trucks. Emission of noble metals from catalytic converters appeared to be impacted by the presence of older vehicles. Elements related to brake wear were impacted by enriched road dust resuspension, but correlations between these elements in PM2.5 indicate that direct brake wear emissions are also important. A submicrometer particle mode was observed in the emissions of Pb, Ca, Fe, and Cu.  相似文献   

8.
Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.  相似文献   

9.
Daily PM2.5 samples were repeatedly collected (1-8 times) in the homes of elderly nonsmoking individuals with coronary heart disease in Amsterdam, The Netherlands (33 individuals) and Helsinki, Finland (44 individuals). Sources of indoor PM2.5 were evaluated using a two-way multilinear engine model. Because the indoor elemental data lacked a traffic marker, separation of traffic related PM was attempted by combining the indoor data with fixed site outdoor data that also contained NO. Six outdoor sources, including long-range transport (LRT), urban mixture, oil combustion, traffic, sea-salt, and soil were identified, and three indoor sources were resolved: resuspension, potassium-rich and copper-rich sources. The average contribution of the indoor factors was 6% (1.1 microg m(-3)) and 22% (2.4 microg m(-3)) in Amsterdam and Helsinki, respectively. The highest longitudinal correlations between source-specific outdoor and indoor PM2.5 concentrations were found for LRT and urban mixture; the median R was above 0.6 for most sources. The longitudinal correlations were lower in Helsinki than in Amsterdam. Indoor-generated PM2.5 was not related to ambient concentrations. We conclude that using outdoor and indoor data together improved the source apportionment of indoor PM2.5. The results support the use of fixed site outdoor measurements in epidemiological time-series studies on outdoor air pollution.  相似文献   

10.
An empirical model based on the regression between daily PM2.5 (particles with aerodynamic diameters of less than 2.5 microm) concentrations and aerosol optical thickness (AOT) measurements from the multiangle imaging spectroradiometer (MISR) was developed and tested using data from the eastern United States during the period of 2001. Overall, the empirical model explained 48% of the variability in PM2.5 concentrations. The root-mean-square error of the model was 6.2 microg/m3 with a corresponding average PM2.5 concentration of 13.8 microg/m3. When PM2.5 concentrations greater than 40 microg/m3 were removed, model results were shown to be unbiased estimators of observations. Several factors, such as planetary boundary layer height, relative humidity, season, and other geographical attributes of monitoring sites, were found to influence the association between PM2.5 and AOT. The findings of this study illustrate the strong potential of satellite remote sensing in regional ambient air quality monitoring as an extension to ground networks. With the continual advancement of remote sensing technology and global data assimilation systems, AOT measurements derived from satellite remote sensors may provide a cost-effective approach as a supplemental source of information for determining ground-level particle concentrations.  相似文献   

11.
Ambient aerosol sampling was conducted in Diamond Bar, Mira Loma, and Riverside, CA, to observe at close range the effects of ammonia emissions on air quality. These sites are located upwind,within, and downwind, respectively, of the Chino dairy area, the largest single source of ammonia emissions in the Los Angeles area. Inertial impactors and bulk filter samplers provided 4-7-h measurements of aerosol chemical composition and size distribution. Daily average fine particle mass concentrations were in the range 22.4-143.0 microg m(-3). On some days the fine particulate matter concentrations were more than two times greater than the proposed 24-h Federal standard of 65 microg m(-3). Ammonium nitrate was the largest component of fine particle mass at all three sites; 24-h average fine particulate ammonium plus nitrate concentrations ranged from 11.7 to 75.4 microg m(-3). A single air mass was studied as it passed the Diamond Bar air monitoring site in the morning and stagnated near Mira Loma in the evening of the same day. Between these two sites NO was oxidized to NO2, and the ammonia concentration increased by a factor of 5. A second air parcel trajectory, which stagnated near Mira Loma during the early morning and passed near the Riverside site approximately 24 h later, showed a decrease in ammonia concentration over time that is consistent with dilution as the air mass moved downwind from the source of ammonia in the dairy area. Particulate NH4NO3 concentration in that air parcel remained approximately constant over time, consistent with a continued excess of NH3 relative to HNO3 downwind of the dairy area.  相似文献   

12.
The multivariate receptor models Positive Matrix Factorization (PMF) and Unmix were used along with the EPA's Chemical Mass Balance model to deduce the sources of PM2.5 at a centrally located urban site in Seattle, WA. A total of 289 filter samples were obtained with an IMPROVE sampler from 1996 through 1999 and were analyzed for 31 particulate elements including temperature-resolved fractions of the particulate organic and elemental carbon. All three receptor models predicted that the major sources of PM2.5 were vegetative burning (including wood stoves), mobile sources, and secondary particle formation with lesser contributions from resuspended soil and sea spray. The PMF and Unmix models were able to resolve a fuel oil combustion source as well as distinguish between diesel emissions and other mobile sources. In addition, the average source contribution estimates via PMF and Unmix agreed well with an existing emissions inventory. Using the temperature-resolved organic and elemental carbon fractions provided in the IMPROVE protocol, rather than the total organic and elemental carbon, allowed the Unmix model to separate diesel from other mobile sources. The PMF model was able to do this without the additional carbon species, relying on selected trace elements to distinguish the various combustion sources.  相似文献   

13.
The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal+tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 microm (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO4, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO4-H2O, is the main host for Zn and only occurs in the PM derived from the coal+tire blend, whereas yavapaiite, KFe3+(SO4)2, is present only when pure coal was combusted. We conclude that these metal sulfates precipitated from the flue gas, may be globally abundant aerosols, and have, through hydration or dissolution, a major environmental and health impact.  相似文献   

14.
Ambient ultrafine particles have gained attention with recent evidence showing them to be more toxic than larger ambient particles. Few studies have investigated the distribution of chemical constituents within the ultrafine range. The current study explores the size-fractionated ultrafine (10-180 nm) chemical composition at urban source sites (USC and Long Beach) and inland receptor sites (Riverside and Upland) in the Los Angeles basin over three different seasons. Size-fractionated ultrafine particles were collected by a NanoMOUDI over a period of 2 weeks at each site. Measurements of ultrafine mass concentrations varied from 0.86 to 3.5 microg/m3 with the highest concentrations observed in the fall. The chemical composition of ultrafine particles ranged from 32 to 69% for organic carbon (OC), 1-34% for elemental carbon (EC), 0-24% for sulfate, and 0-4% for nitrate. A distinct OC mode was observed between 18 and 56 nm in the summer, possibly indicating photochemical secondary organic aerosol formation. The EC levels are higher in winter at the source sites due to lower inversion heights and are higher in summer at the receptor sites due to increased long-range transport from upwind source areas. Nitrate and sulfate were measurable only in the larger particle size ranges of ultrafine PM. Collocated continuous measurements of particle size distributions and gaseous pollutants helped to differentiate ultrafine particle sources at each site.  相似文献   

15.
In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.  相似文献   

16.
An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.  相似文献   

17.
Aerosol time-of-flight mass spectrometry (ATOFMS) instruments measure the size and chemical composition of individual particles in real-time. ATOFMS chemical composition measurements are difficult to quantify, largely because the instrument sensitivities to different chemical species in mixed ambient aerosols are unknown. In this paper, we develop a field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS measurements are compared with collocated impactor measurements taken at Riverside, CA, in September 1996, August 1997, and October 1997. This is the first comparison of ion signal intensities from a single-particle instrument with quantitative measurements of atmospheric aerosol chemical composition. The comparison reveals that ATOFMS instrument sensitvities to both NH4+ and NO3- decline with increasing particle aerodynamic diameter over a 0.32-1.8 microm calibration range. The stability of this particle size dependence is tested overthe broad range of fine particle concentrations (PM1.8) = 17.6 +/- 2.0-127.8 +/- 1.8 microg m(-3)), ambient temperatures (23-35 degrees C), and relative humidity conditions (21-69%), encountered during the field experiments. This paper describes a potentially generalizable methodology for increasing the temporal and size resolution of atmospheric aerosol chemical composition measurements, using tandem ATOFMS-impactor sampling.  相似文献   

18.
Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of local primary emissions.  相似文献   

19.
Particle mass and number measurements in a church indicate significant increases of indoor particle concentrations during the burning of incense. Generally, varying concentration regimes can be attributed to different "modes of indoor activity" and emission sources. While periods of candle burning are negligible concerning particle concentrations, increases by a factor of 6.9 and 9.1 during incense burning were observed for PM10 and PM1, respectively. At maximum, indoor PM10 shows an 8.1-fold increase in comparison to outdoor measurements. The increase of particles < 2 microm is significantly enhanced in comparison to larger particles. Due to a particle decay rate of 0.9 h(-1) post-service concentrations are elevated for a time span of approximately 24 h above indoor background concentrations.  相似文献   

20.
Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号