首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter samples were solvent extracted and derivatized using analytical techniques that characterize functional groups contained in the compound: BF3-methanol derivatization was used for carboxylic groups, BSTFA for acidic and nonacidic hydroxyl groups, and PFBHA for ketone and aldehyde groups. The resulting derivative compounds were analyzed by GC-MS in the methane Cl and El modes. GC-MS analysis showed the occurrence of 103 oxygenated organic compounds in the filter extracts, 28 of which were identified. The major components include five tracer compounds previously identified from the photooxidation of alpha-pinene/NOx or beta-pinene/NOx systems, C4-C6 linear dicarboxylic acids, ketolimononaldehyde, limonic acid, and ketolimonic acid. Time profiles, yields, and proposed reaction schemes are provided for selected compounds. The laboratory SOA yield was 0.51 at a SOA concentration of 1470 microg m(-3). To determine the contributions of SOA products from d-limonene to ambient PM2.5, an analysis was performed for eight ambient PM2.5 samples collected in the southeastern United States in summer 2003. GC-MS analysis showed the occurrence of 21 d-limonene SOA compounds, indicating the impact of d-limonene on the regional aerosol burden. Based on our analysis, two compounds (nos. 55 and 69), not observed from the photooxidation of alpha-pinene or beta-pinene, are candidate tracers for d-limonene in atmospheric particulate matter.  相似文献   

2.
Nuclear magnetic resonance (NMR) spectroscopy is used to investigate the chemical composition of organic aerosol in terms of functional group distribution with a special focus on secondary organic aerosol (SOA) formation. The knowledge of the functional group composition is a benchmark for understanding how SOA components partition into the particulate phase and undergo chemical transformation. The paper presents a new chemical derivatization procedure coupled to proton NMR (1H NMR) analysis for the specific determination of total carbonylic groups in atmospheric aerosol samples, which couples with the procedure for determination of total carboxylic acid groups described in a previous work. A first deployment of the combined techniques for the analysis of PM10 samples collected in the Po Valley in the warm season shows that the concentration in the particulate phase of total carbonyls varies and covaries with respect to those of carboxylic acids and of less-oxidized functional groups. The proposed methodology provides the breakdown of the oxygenated fraction of the organic aerosol into major functional groups through well-established chemical methods and can be used to benchmark the more sensitive and widely used aerosol mass spectrometric techniques.  相似文献   

3.
Aerosol growth by heterogeneous reactions of diverse carbonyls in the presence and absence of acidified seed aerosols was studied in a 4 m long flow reactor (2.5 cm i.d.) and a 2-m3 indoor Teflon film chamber under darkness. The acid catalytic effects on heterogeneous aerosol production were observed for diverse carbonyls in various ranges of humidities and compositions of seed inorganic aerosols. Particle population data measured by a scanning mobility particle sizer were used to calculate organic aerosol growth. To accountforthe aerosol growth contributed by heterogeneous reactions, the increase in organic aerosol mass was normalized bythe organic mass predicted by partitioning or the square of predicted organic mass. The carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. The experimental data from aerosol yields in the flow reactorwere semiempirically fitted to the model parameters to predict the organic aerosol growth. The model parameters consist of environmental characteristics and molecular structure information of organic carbonyls. Basicity constants of carbonyls were used to describe the proton affinity of carbonyls for the acid catalysts. Particle environmental factors, such as humidity, temperature, and inorganic seed composition, were expressed by excess acidity and the parameters obtained from an inorganic thermodynamic model. A stepwise regression analysis of the aerosol growth model for the experimental data revealed that either the chemical structure information of carbonyls or characteristic environmental parameters are statistically significant in the prediction of organic aerosol growth. It was concluded thatthis model approach is applicable to predict secondary organic aerosol formation by heterogeneous reaction.  相似文献   

4.
目的以质谱定性定量,测定保健品中水苏糖含量。方法采用高效液相色谱/电喷雾质谱联用法(HPLC-ESI/MS),色谱柱:瑞典KromasilNH2柱;流动相:甲醇+乙腈+0.1%甲酸氨水溶液=8+52+40(体积比);流速1.0ml/min。质谱采用电喷雾正离子模式(ESI+),对m/z689进行选择离子监测,扫描范围(m/z):620~700amu。结果水苏糖在80~120μg/ml范围内,峰面积和浓度呈良好的线性关系(r=0.9992);相对标准偏差(RSD)为0.73%;在3个添加水平下的回收率均在93.0%~105.8%。结论本方法快速、选择特异性高、分析时间短且无需衍生处理,抗干扰能力强,能准确快速测定水苏糖的含量。  相似文献   

5.
Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments. Thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) was used in conjunction with the environmental chamber to study SOA formation. The mass spectra obtained at different photon energies and the photoionization efficiency (PIE) spectra of the SOA products can be obtained in real time. Aided by the ionization energies (IE) either from the ab initio calculations or the literatures, a number of SOA products were proposed. In addition to methacrolein, methyl vinyl ketone, and 3-methyl-furan, carbonyls, hydroxycarbonyls, nitrates, hydroxynitrates, and other oxygenated compounds in SOA formed in laboratory photo-oxiadation experiments were identified, some of them were investigated for the first time. Detailed chemical identification of SOA is crucial for understanding the photo-oxidation mechanisms of VOCs and the eventual formation of SOA. Possible reaction mechanisms will be discussed.  相似文献   

6.
Quantitative kinetic and physical phase partitioning models of secondary organic aerosol (SOA) formation resulting from the reactions of aromatic species were integrated into a mechanism for gas-phase reactions. Using the resulting model, analyses of the sensitivity of SOA formation to several parameters (e.g., VOC/NOx ratio, rate parameters) were performed. Results indicated that aerosol yield (SOA formed per amount of hydrocarbons reacted) depends on the extent of conversion of parent hydrocarbons, partitioning coefficient, initial aerosol mass concentration, and rate parameters. On the basis of the sensitivity studies, models for SOA yield were developed for 11 aromatic compounds. Comparison of the results from current SOA models to the results from this study suggests that mechanisms describing SOA formation from aromatic species must incorporate the reactions of reactive intermediates.  相似文献   

7.
Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of alpha-pinene and isoprene, in the presence or absence of sulfate seed aerosol, is investigated through a series of controlled chamber experiments in two separate laboratories. By using electrospray ionization-mass spectrometry, sulfate esters in SOA produced in laboratory photooxidation experiments are identified for the first time. Sulfate esters are found to account for a larger fraction of the SOA mass when the acidity of seed aerosol is increased, a result consistent with aerosol acidity increasing SOA formation. Many of the isoprene and alpha-pinene sulfate esters identified in these chamber experiments are also found in ambient aerosol collected at several locations in the southeastern U.S. It is likely that this pathway is important for other biogenic terpenes, and may be important in the formation of humic-like substances (HULIS) in ambient aerosol.  相似文献   

8.
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed.  相似文献   

9.
Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers were also implemented to demonstrate the formation of high molecular weight organic structures. The reaction of ozone with alpha-pinene to generate secondary organic aerosols (SOAs) was performed in the presence of background aerosol consisting of a mixture of wood soot and diesel soot. Results strongly suggest that indigenous sulfuric acid associated with the combustion of fossil fuels (e.g., diesel soot) can initiate acid-catalyzed heterogeneous reactions of SOAs on the particle phase.  相似文献   

10.
Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary emissions after several hours of processing at atmospherically relevant hydroxyl radical concentrations. Less than 10% of the SOA mass can be explained using a SOA model and the measured oxidation of known precursors such as light aromatics. However, the ultimate yield of SOA is uncertain because it is sensitive to treatment of particle and vapor losses to the chamber walls. Mass spectra from an aerosol mass spectrometer (AMS) reveal that the organic aerosol becomes progressively more oxidized throughout the experiments, consistent with sustained, multi-generational production. The data provide strong evidence that the oxidation of a wide array of precursors that are currently not accounted for in existing models contributes to ambient SOA formation.  相似文献   

11.
A predictive model for secondary organic aerosol (SOA) formation by both partitioning and heterogeneous reactions was developed for SOA created from ozonolysis of alpha-pinene in the presence of preexisting inorganic seed aerosols. SOA was created in a 2 m3 polytetrafluoroethylene film indoor chamber under darkness. Extensive sets of SOA experiments were conducted varying humidity, inorganic seed compositions comprising of ammonium sulfate and sulfuric acid, and amounts of inorganic seed mass. SOA mass was decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). The reaction rate constant for OM(H) production was subdivided into three categories (fast, medium, and slow) to consider different reactivity of organic products for the particle phase heterogeneous reactions. The influence of particle acidity on reaction rates was treated in a previous semiempirical model. Model OM(H) was developed with medium and strong acidic seed aerosols, and then extrapolated to OM(H) in weak acidic conditions, which are more relevant to atmospheric aerosols. To demonstrate the effects of preexisting glyoxal derivatives (e.g., glyoxal hydrate and dimer) on OM(H), SOA was created with a seed mixture comprising of aqueous glyoxal and inorganic species. Our results show that heterogeneous SOA formation was also influenced by preexisting reactive glyoxal derivatives.  相似文献   

12.
Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls contribute to the formation of secondary organic aerosol (SOA). We report the first measurements of uptake of methylglyoxal on liquid H2SO4 over the temperature range of 250-298 K and acidic range of 55-85 wt %. From the time-dependent uptake the effective Henry's law solubility constant (H*) was determined. Heterogeneous reactions of methylglyoxal are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of methylglyoxal on H2SO4 and the measurements do not support an acid-catalyzed uptake of methylglyoxal. The results imply that heterogeneous reactions of methylglyoxal contribute to organic aerosol formation in less acidic media and hydration and polymerization of methylglyoxal in the atmospheric aerosol-phase are dependent on the hygroscopicity, rather than the acidity of the aerosols.  相似文献   

13.
Effect of acidity on secondary organic aerosol formation from isoprene   总被引:1,自引:0,他引:1  
The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is closely correlated to increasing aerosol acidity (R2 = 0.979). Direct chemical evidence for acid-catalyzed particle-phase reactions was obtained from the SOA chemical analyses. Aerosol mass concentrations for the 2-methyltetrols, as well as the newly identified sulfate esters, both of which serve as tracers for isoprene SOA in ambient aerosols, increased significantly with enhanced aerosol acidity. Aerosol acidities, as measured in nmol of H+ m(-3), employed in the present study are in the same range as those observed in tropospheric aerosol collected from the eastern U.S.  相似文献   

14.
Intermediate volatility organic compounds (IVOCs) are an important class of secondary organic aerosol (SOA) precursors that have not been traditionally included in chemical transport models. A challenge is that the vast majority of IVOCs cannot be speciated using traditional gas chromatography-based techniques; instead they are classified as an unresolved complex mixture (UCM) that is presumably made up of a complex mixture of branched and cyclic alkanes. To better understand SOA formation from IVOCs, a series of smog chamber experiments was conducted with different alkanes, including cyclic, branched, and linear compounds. The experiments focused on freshly formed SOA from hydroxyl (OH) radical-initiated reactions under high-NO(x) conditions at typical atmospheric organic aerosol concentrations (C(OA)). SOA yields from cyclic alkanes were comparable to yields from linear alkanes three to four carbons larger in size. For alkanes with equivalent carbon numbers, branched alkanes had the lowest SOA mass yields, ranging between 0.05 and 0.08 at a C(OA) of 15 μg m(-3). The SOA yield of branched alkanes also depends on the methyl branch position on the carbon backbone. High-resolution aerosol mass spectrometer data indicate that the SOA oxygen-to-carbon ratios were largely controlled by the carbon number of the precursor compound. Depending on the precursor size, the mass spectrum of SOA produced from IVOCs is similar to the semivolatile-oxygenated and hydrocarbon-like organic aerosol factors derived from ambient data. Using the new yield data, we estimated SOA formation potential from diesel exhaust and predict the contribution from UCM vapors to be nearly four times larger than the contribution from single-ring aromatics and comparable to that of polycyclic aromatic hydrocarbons after several hours of oxidation at typical atmospheric conditions. Therefore, SOA from IVOCs may be an important contributor to urban OA and should be included in SOA models; the yield data presented in this study are suitable for such use.  相似文献   

15.
Glyoxal is a significant atmospheric aldehyde formed from both anthropogenic aromatic compounds and biogenic isoprene emissions. The chemical behavior of glyoxal relevant to secondary organic aerosol (SOA) formation and analysis is examined in GC-MS, electrospray ionization (ESI)-MS, and particle chamber experiments. Glyoxal oligomers are shown to rapidly decompose to glyoxal in GC injection ports at temperatures > or = 120 degrees C. Glyoxal dihydrate monomer is dehydrated at temperatures > or = 140 degrees C during GC analysis but shows only oligomers (n < or = 7) upon ESI-MS analysis. Thus both of these analytical techniques will cause artifacts in speciation of glyoxal in SOA. In particle chamber experiments, glyoxal (at -0.1 Torr) condensed via particle-phase reactions when relative humidity levels exceeded a threshold of -26%. Both the threshold humidity and particle growth rates (-0.1 nm/min) are consistent with a recent study performed at glyoxal concentrations 4 orders of magnitude below those used here. This consistency suggests a mechanism where the surface water layer of solid-phase aerosol becomes saturated with glyoxal dihydrate monomer, triggering polymerization and the establishment of an organic phase.  相似文献   

16.
The role of organic peroxides in secondary organic aerosol (SOA) formation from reactions of monoterpenes with O3 was investigated in a series of environmental chamber experiments. Reactions were performed with endocyclic (alpha-pinene and delta3-carene) and exocyclic (beta-pinene and sabinene) alkenes in dry and humid air and in the presence of the OH radical scavengers: cyclohexane, 1-propanol, and formaldehyde. A thermal desorption particle beam mass spectrometer was used to probe the identity and volatility of SOA components, and an iodometric-spectrophotometric method was used to quantify organic peroxides. Thermal desorption profiles and mass spectra showed that the most volatile SOA components had vapor pressures similar to pinic acid and that much of the SOA consisted of less volatile species that were probably oligomeric compounds. Peroxide analyses indicated that the SOA was predominantly organic peroxides, providing evidence that the oligomers were mostly peroxyhemiacetals formed by heterogeneous reactions of hydroperoxides and aldehydes. For example, it was estimated that organic peroxides contributed approximately 47 and approximately 85% of the SOA mass formed in the alpha- and beta-pinene reactions, respectively. Reactions performed with different OH radical scavengers indicated that most of the hydroperoxides were formed through the hydroperoxide channel rather than by reactions of stabilized Criegee intermediates. The effect of the OH radical scavenger on the SOA yield was also investigated, and the results were consistent with results of recent experiments and model simulations that support a mechanism based on changes in the [HO2]/[RO2] ratios. These are the first measurements of organic peroxides in monoterpene SOA, and the results have important implications for understanding the mechanisms of SOA formation and the potential effects of atmospheric aerosol particles on the environment and human health.  相似文献   

17.
Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.  相似文献   

18.
The composition dependence of secondary organic aerosol (SOA) mass concentrations is explored using an absorptive partitioning model under a variety of simplified atmospheric conditions. A thermodynamic model based on the Wilson equation is used to estimate activity coefficients for mixtures containing primary organics, secondary organics, and water. Changes in the mean molecular weight of the absorbing aerosol mixture due to the presence of water are also accounted for. Model simulations use semivolatile and primary organic components with differing affinities for each other and for water. Results suggest that aerosol composition has an effect on SOA levels that is significant and comparable in magnitude to those due to diurnal temperature variations and semivolatile precursor emission rates. For dissimilar organic components at zero relative humidity, predicted peak SOA mass concentrations are reduced up to 45%. Under low and high relative humidity conditions, SOA levels increase by 3-41% and 11-130%, respectively, depending on the hydrophobicity of the organic components, with maximum concentrations at night when humidity is highest Effects are most pronounced for relatively volatile components that are most sensitive to shifts in the amount and type of absorbing aerosol.  相似文献   

19.
To characterize atmospheric particulate organics with respect to polarity, aerosol samples collected on filters in the urban area of Nagoya, Japan, in 2009 were extracted using water, methanol, and ethyl acetate. The extracts were atomized and analyzed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a hygroscopicity tandem differential mobility analyzer. The atmospheric concentrations of the extracted organics were determined using phthalic acid as a reference material. Comparison of the organic carbon concentrations measured using a carbon analyzer and the HR-ToF-AMS suggests that organics extracted with water (WSOM) and ethyl acetate (EASOM) or those extracted with methanol (MSOM) comprise the greater part of total organics. The oxygen-carbon ratios (O/C) of the extracted organics varied: 0.51-0.75 (WSOM), 0.37-0.48 (MSOM), and 0.27-0.33 (EASOM). In the ion-group analysis, WSOM, MSOM, and EASOM were clearly characterized by the different fractions of the CH and CO(2) groups. On the basis of the hygroscopic growth measurements of the extracts, κ of organics at 90% relative humidity (κ(org)) were estimated. Positive correlation of κ(org) with O/C (r 0.70) was found for MSOM and EASOM, but no clear correlation was found for WSOM.  相似文献   

20.
According to the pseudo-ideal mixing assumption employed in practically all chemical transport models, organic aerosol components from different sources interact with each other in a single solution, independent of their composition. This critical assumption greatly affects modeled organic aerosol concentrations, but there is little direct experimental evidence to support it. A main experimental challenge is that organic aerosol components from different sources often look similar when analyzed with an aerosol mass spectrometer. We developed a new experimental method to overcome this challenge, using isotopically labeled compounds ((13)C or D) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We generated mixtures of secondary organic aerosol (SOA) from isotopically labeled toluene and from unlabeled α-pinene and used the HR-ToF-AMS data to separate these different SOA types. We evaluated their interaction by comparing the aerosol mass yields of toluene and α-pinene when the SOA was formed in these mixtures to their yields when the SOA was formed in isolation. At equilibrium, our results are consistent with pseudo-ideal mixing of anthropogenic and biogenic SOA components from these chemically dissimilar precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号