首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used the fluorescent labelled dopamine D1-receptor antagonist Bodipy-SCH 23390 for the cellular localization of D1-ligand binding sites in the retinae of different vertebrates (teleosts, Xenopus, turtle, rat and rabbit). Competition experiments with unfixed cryosections of fish retina were performed to characterize the binding conditions of Bodipy-labelled SCH 23390. Tissue bound [3H]SCH 23390 was displaceable with increased amounts of bodipy-SCH 23390. The pharmacological specificity of the D1 fluorescent antagonist was determined by competition experiments with an excess of unlabelled SCH 23390. This treatment significantly reduced the level of fluorescence of the retina confirming the specificity of the binding. We observed a homogeneously distributed fluorescence signal in both plexiform layers in unfixed cryosections of fish, frog, turtle, rat and rabbit. Similar staining intensities of both plexiform layers were found in frog, turtle, rat and rabbit retina. In teleosts, the label of the outer plexiform layer was markedly more intense. Non-specific label was associated with photoreceptor outer and inner segments. The specific labelling of both plexiform layers indicates a mismatch of dopamine releasing and D1-binding sites, and suggests a possible extrasynaptic localization of the D1-receptor. The physiological significance of the observed distribution of D1-ligand binding sites is discussed with respect to the role of dopamine in controlling adaptational processes in the retina.  相似文献   

2.
The reproducibility of [11C]SCH 23390 in PET was studied in 10 normal human subjects. METHODS: The scan-to-scan variation of several measures used in PET data analysis, including the radioactivity ratio, plasma-input Logan total distribution volume (DV), plasma-input Logan DV ratio (DVR) and tissue-input Logan Bmax/Kd values, was determined. RESULTS: There were significant correlations among the radioactivity ratio, plasma-input DVR and tissue-input Bmax/Kd. With the cerebellum as the reference region, these three measures also had high reliability (86%-95%), high between-subject s.d. (7.7%-11.3%) and small within-subject s.d. (2.3%-3.6%), indicating that they are comparable and useful measures for the assessment of dopamine D1 receptor binding. CONCLUSION: The radioactivity ratio and the tissue-input Bmax/Kd may be preferred methods for the evaluation of dopamine D1 receptor binding because these two methods do not require arterial blood sampling and metabolite analysis. Our results show that cerebellum is a reliable reference region for SCH 23390. When the Logan plasma-input function method is used in data analysis for SCH 23390, DVRs rather than total DV values should be used because of the poor reliability of the DV values and their lack of correlation with other measures. Carbon-11-SCH 23390 is thus a reliable and reproducible ligand for the study of dopamine D1 receptor binding by PET.  相似文献   

3.
An assessment of the genetic toxicology of antimony trioxide   总被引:1,自引:0,他引:1  
Dopamine receptor expression in human fetal forebrain (between 6 and 20 weeks of gestation) was measured using tissue-slice receptor autoradiography with the D1-like and D2-like antagonists [3H]-SCH23390 and [3H]-YM09151-2, respectively. Tissue sections were assayed in saturation studies and examined for age- and sex-related changes in Bmax. We made the following observations: (1) the ages at which D1- and D2-like receptors were first expressed in whole forebrain sections could be reliably identified but were not significantly different from one another (gestational age 65 days for D1- vs. 72 days for D2-like receptors); (2) age-related increases in both D1- and D2-like receptors were demonstrated in forebrain and, from the middle of the first to the middle of the second trimester, the Bmax for each ligand increased by an order of magnitude after the onset of the specific binding site's expression; (3) age-related increases in D1-like receptors, but not D2-like receptors, could be demonstrated in cortex; and, (4) in one case of trisomy 18, the Bmax for [3H]-SCH23390 was significantly elevated above the 95% confidence interval when compared to an age-regressed normal sample. Although D2-like receptor density significantly increased with age in forebrain, age-regressed changes in D2-like receptor expression in cortex and striatum did not reach statistical significance. Likewise, a comparison of the mean Bmax's by sex for both ligands in midgestational striatum failed to reach significance. These data corroborate the findings of other investigators who have delineated the ontogeny of dopaminergic systems in other animal species. The regional differences in the expression of dopamine receptor families may be relevant to the role which dopamine may play during normal gestational brain development. Moreover, significant deviations in dopamine receptor expression during gestation (as seen in this one case of trisomy 18) may signify underlying pathological processes that ultimately are manifested by abnormal psychological development and/or cognitive functioning.  相似文献   

4.
The aim of this study was to elucidate electrophysiologically the actions of dopamine and SKF38393, a D1-like dopamine receptor agonist, on the membrane excitability of striatal large aspiny neurons (cholinergic interneurons). Whole-cell and perforated patch-clamp recordings were made of striatal cholinergic neurons in rat brain slice preparations. Bath application of dopamine (1-100 microM) evoked a depolarization/inward current with an increase, a decrease, or no change in membrane conductance in a dose-dependent manner. This effect was antagonized by SCH23390, a D1-like dopamine receptor antagonist. The current-voltage relationships of the dopamine-induced current determined in 23 cells suggested two conductances. In 10 cells the current reversed at -94 mV, approximately equal to the K+ equilibrium potential (EK); in three cells the I-V curves remained parallel, whereas in 10 cells the current reversed at -42 mV, which suggested an involvement of a cation permeable channel. Change in external K+ concentration shifted the reversal potential as expected for Ek in low Na+ solution. The current observed in 2 mM Ba2+-containing solution reversed at -28 mV. These actions of dopamine were mimicked by application of SKF38393 (1-50 microM) or forskolin (10 microM), an adenylyl cyclase activator, and were blocked by SCH23390 (10 microM) or SQ22536 (300 microM), an inhibitor of adenylyl cyclase. These data indicate, first, that dopamine depolarizes the striatal large aspiny neurons by a D1-mediated suppression of resting K+ conductance and an opening of a nonselective cation channel and, second, that both mechanisms are mediated by an adenylyl cyclase-dependent pathway.  相似文献   

5.
Stimulation of a D4-like dopamine (DA) receptors inhibits a cAMP-dependent increase in serotonin N-acetyltransferase activity and melatonin biosynthesis in the chick retina. In order to gain more insight into the molecular mechanisms underlying this suppressive action of DA, the effects of selective stimulation of the D2-family of DA receptors (including the D4-subtype) on cAMP formation were examined in chick retina using two experimental approaches: measurements of adenylyl cyclase activity in retinal homogenates, and cAMP accumulation in eye cup preparation prelabeled with [3H]adenine. The DA-sensitive adenylyl cyclase system is well expressed in chick retina. DA increased both basal and forskolin-stimulated adenylyl cyclase activity. This effect of DA was antagonized by SCH 23390 (a blocker of D1-family of DA receptors) and not affected by sulpiride (a D20-family blocker). Incubation of retinal homogenates with quinpirole (a predominant agonist of D3/D4 DA receptor subtypes) did not produce any major changes in adenylyl cyclase activity. On the other hand, activation of D4-like DA receptor subtype by quinpirole decreased forskolin-stimulated cAMP formation in intact chick retina maintained in "eye-cup" preparations. It is suggested that D4-like DA receptors regulating melatonin biosynthesis in chick retina may be indirectly linked to the cAMP generating system.  相似文献   

6.
We investigated the recovery of light-adaptive spinule formation following dopamine depletion with intraocular injection of 6-hydroxydopamine (6-OHDA) and subsequent neogeneration of dopamine interplexiform cells (DA-IPC) at the marginal zone. DA-IPCs were gone by 2 weeks postinjection and appeared at the marginal zone by 6 weeks postinjection, at which time DA-IPC neurites grew toward the central retina, reaching within 0.5 mm of the central retina by 1 year. Retinas from day time, light-adapted fish at 2 weeks, 4 weeks, 3 months, and 1 year postinjection with 6-OHDA were processed for pre-embedding tyrosine hydroxylase immunoreactivity (TOH-IR) and compared to sham-injected and control retinas at the electron-microscopical (EM) level. Only 6-OHDA fish that tilted markedly toward the injected eye were used for these experiments. The tilt mimics the dorsal light reaction, indicating a 2-2.5 log unit increase in the photopic sensitivity of the 6-OHDA eye. Spinule formation was reduced by about 60% in the 2- and 4-week 6-OHDA retinas, but returned to control levels throughout the entire retina of 3-month and 1 year 6-OHDA retinas even though the central region of these retinas contained no detectable TOH-IR. Intraocular injection with 10 microM SCH 23390 (a D1 antagonist) reduced light-adaptive spinule formation by 50% both in control eyes as well as those eyes that were 3 months post 6-OHDA injected. The full return of spinule formation with only partial reinnervation of the retina with DA-IPC processes and their subsequent inhibition by SCH 23390 indicates that dopamine diffused large distances within the retina to regulate this synaptic plasticity (i.e. displayed volume transmission). Also, since all 6-OHDA injected fish displayed an increased photopic sensitivity in the injected eye when sacrificed, we suggest that horizontal cell spinules are not required for photopic luminosity coding in the outer retina.  相似文献   

7.
Nucleus accumbens dopamine is often hypothesized as the critical factor for modulating cocaine self-administration. In the current study we examined the extent to which dopamine in the amygdala could contribute to cocaine intake behaviour and modify nucleus accumbens dopamine levels. Rats were trained to self-administer intravenous cocaine (1.5 mg/kg/injection) under a fixed-ratio reinforcement schedule in daily 3 h operant training sessions. In the first in vivo microdialysis experiment, extracellular dopamine levels were found to be increased 200% of baseline in the amygdala and by 400% in the nucleus accumbens. Although cocaine induced similar profiles of dopamine overflow in the two mesolimbic areas, in the nucleus accumbens the latency of the dopaminergic response was shorter (three- to four-fold) during both initiation and termination of the cocaine self-administration session than in the amygdala. Despite achieving a stable self-regulated pattern of cocaine intake and high dopamine concentrations in the nucleus accumbens, a unilateral injection of the D1 receptor antagonist SCH 23390 (0.5 or 1.5 microg) into the amygdala was still able to increase the rate of cocaine intake. This behavioural effect was accompanied by a dose-dependent increase in nucleus accumbens dopamine levels; at the highest SCH 23390 concentration cocaine intake was increased by 400% and dopamine levels were potentiated by an additional 400%. In vivo autoradiography using [3H]SCH 23390 showed that D1 receptor sites contributing to the behavioural and subsequent neurochemical effects were predominantly localized to the amygdala and not the nucleus accumbens. Altogether these results point to a significant contribution of in vivo amygdala D1 dopamine transmission to cocaine self-administration behaviour.  相似文献   

8.
The involvement of dopamine D1 receptor systems in the reinforcing properties of opiate reward was studied by examining the effect of the dopamine D1 antagonist SCH23390 on the initiation of heroin self-administration in rats. The D1 antagonist was administered daily systemically or locally in the nucleus accumbens (NAC), after which the animals were allowed to self-administer heroin (IV) in a 3-h session for 5 consecutive days. Systemic treatment with SCH23390 (0.17 and 0.5 mg.kg-1) significantly decreased heroin intake during initiation of heroin self-administration, while a dose of 0.06 mg.kg-1 was not effective. Local administration of SCH23390 (0.5 and 2.5 micrograms/site) in the NAC did not affect heroin intake. Both systemic and intra-accumbal administration of SCH23390 dose dependently decreased motor behavior measured in a small open field. The attenuation of heroin intake during initiation of heroin self-administration by blockade of dopamine D1 receptor systems may be due to a decrease in the reinforcing effects of heroin or more likely to a reduction in non-reinforcement-related behavior. The dopamine D1 receptors present in the NAC are probably not involved in opiate reward.  相似文献   

9.
The binding parameters of [3H]SCH 23390 and [3H]spiperone (radioligands for dopamine D1 and D2 receptors, respectively) were investigated in autopsied frontal cortex, caudate nucleus and globus pallidus/putamen of cirrhotic patients who died in hepatic coma as well as in age- and sex-matched controls. Specific [3H]SCH 23390 binding site densities were unchanged in all regions; in contrast, specific [3H]spiperone binding site density was decreased (by 44%, P < 0.001) in the globus pallidus/putamen of patients with HE. Decreased densities of pallidal D2 binding sites could relate to the motor dysfunctions commonly encountered in human HE.  相似文献   

10.
The aporphine alkaloids boldine and glaucine have been reported to show "neuroleptic-like" actions in mice, suggesting that they may act as dopamine antagonists. We have found that in vitro boldine displaces specific striatal [3H]-SCH 23390 binding with IC50 = 0.4 microM and [3H]-raclopride binding with IC50 = 0.5 microM, while the affinities of glaucine at the same sites are an order of magnitude lower. In vivo, however, 40 mg/kg boldine (i.p.) did not modify specific striatal [3H]-raclopride binding and only decreased [3H]-SCH 23390 binding by 25%. On the other hand, 40 mg/kg glaucine (i.p.) displaced both radioligands by about 50%. Behaviors (climbing, sniffing, grooming) elicited in mice by apomorphine (0.75 mg/kg s.c.) were not modified by boldine at doses up to 40 mg/kg (i.p.) but were almost completely abolished by 40 mg/kg glaucine (i.p.). In the apomorphine-induced (0.1 mg/kg s.c.) rat yawning and penile erection model, boldine and glaucine appeared to be similarly effective, inhibiting both behaviors by more than 50% at 40 mg/kg (i.p.). Boldine and glaucine, injected i.p. at doses up to 40 mg/kg, were poor modifiers of dopamine metabolism in mouse and rat striatum. These data suggest that boldine does not display effective central dopaminergic antagonist activities in vivo in spite of its good binding affinity at D1- and D2-like receptors, and that glaucine, although less effective in vitro, does appear to exhibit some antidopaminergic properties in vivo.  相似文献   

11.
The influence of neonatal treatment with the pyrethroid insecticide cypermethrin ((R,S)alpha-cyano-3-phenoxybenzyl (1R,S)-cis-trans-3-(2,2-dichloro-vinyl)-2,2-dimethylcyclopropane carboxylate) on postnatal development of renal dopamine receptors was investigated by radioligand binding assay techniques. Treatment with cypermethrin was made on rats from the 10th to the 16th day after birth. Dopamine D1- and D2-like receptors were assayed in frozen sections of kidney of 21-, 30-, 60- and 90-day-old rats using as ligands of dopamine D1- and D2-like receptors [3H]([R](+)-(chloro-2,3,4,5,-tetrahydro-5-phenyl-1,4,-benzazepinal hemimaleate) (SCH 23390) and [3H]spiperone, respectively. Treatment with cypermethrin was without effect on the affinity (Kd value) or the density (Bmax value) of dopamine D1- and D2-like receptors of rats of 21 days of age. In older groups, treatment with the compound reduced the affinity and increased the density of dopamine D1-like receptors, whereas it was without effect on the affinity of dopamine D2-like receptors and decreased their density. These findings indicate that neonatal treatment with the pyrethroid insecticide cypermethrin induces long-lasting impairment of renal dopamine D1- and D2-like receptors and that kidney is a target of the toxic action of the compound. Renal dopamine receptor changes caused by cypermethrin are consistent with possible alterations of renal tubular function and of sympathetic neuroeffector modulation. The above data suggest also that, different from the adult, neonatal exposure to pyrethroid insecticides may induce toxic effects.  相似文献   

12.
We provide evidence that dopamine receptors differentially modulate tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the mouse striatum. The dopamine D1 receptor family (D1-like) antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1 H-3-benazepine (SCH 23390), elevated aromatic L-amino acid decarboxylase activity and protein content in striatum, as well as the mRNA for the enzyme in midbrain. The dopamine D1-like receptor agonist, (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF 38393), had no effect on aromatic L-amino acid decarboxylase. The dopamine D1-like drugs had no effect on tyrosine hydroxylase. In contrast, the dopamine D2 receptor family (D2-like) antagonists haloperidol and spiperone elevated both tyrosine hydroxylase and aromatic L-amino acid decarboxylase activities. The increase in aromatic L-amino acid decarboxylase activity was accompanied by elevated enzyme protein content but not mRNA. The dopamine D2-like receptor agonists, bromocriptine, quinpirole and (+/-)-7-hydroxydipropylaminotetralin (7-OH-DPAT), all decreased striatal tyrosine hydroxylase. Under the conditions used, bromocriptine and 7-OH-DPAT, but not quinpirole, decreased aromatic L-amino acid decarboxylase activity of striatum. Both the dopamine D1- and D2-like receptor antagonists enhanced the turnover of striatal dopamine to differing degrees, as judged by the ratio of acid metabolites of dopamine to dopamine. Taken together our results indicate that aromatic L-amino acid decarboxylase can be modulated independently of tyrosine hydroxylase.  相似文献   

13.
Dopaminergic compounds affect gastric secretion and response to experimental gastric mucosal injury. We showed previously that the novel dopamine D4 receptor antagonist, clozapine, significantly reduces gastric acid secretion and restraint stress-induced gastric lesions. Because the selectivity of clozapine for D4 receptors has recently been questioned, we tested the ability of a known D1 receptor blocker, SCH23390, to affect clozapine-induced reduction in gastric acid secretion. SCH23390 given i.p. or i.c.v., at doses that did not affect gastric acid secretion, significantly blocked the anti-secretory effect of clozapine, administered either peripherally or centrally. These data suggest that neither clozapine nor SCH23390 exhibit as high a degree of selectivity for the dopamine D4 and D1 receptor, respectively, as previously believed.  相似文献   

14.
In fixed tissue, neuronal NADPH-diaphorase staining results from nitric oxide synthase (NOS) activity. Neuronal NOS only synthesizes nitric oxide once activated by the binding of Ca2+/calmodulin. We show here that neuronal NADPH-diaphorase staining is also dependent on Ca2+/calmodulin, implying that only activated NOS is detected. In addition, in bovine pulmonary endothelial cells, carbachol and bradykinin dramatically and rapidly increase the intensity of NADPH-diaphorase staining. Furthermore, administration of MK801, an NMDA antagonist, decreases neuronal NADPH-diaphorase staining. This suggests that the intensity of the NADPH-diaphorase staining is related to the level of enzyme activation at the moment of tissue fixation. The potential of exploiting this observation to detect cellular activation of NOS is illustrated by the observations that the intensity of NADPH-diaphorase staining in rat striatal neurones is decreased following systemic treatment with the D1-like dopamine receptor antagonist SCH23390, and increased by the D2-like antagonist eticlopride. These results therefore provide strong evidence that the NADPH-diaphorase reaction can be used to monitor NOS activity at a cellular level of resolution, and reveal a dopaminergic regulation of NOS activity in the striatum mediated by D1-like and D2-like dopamine receptors.  相似文献   

15.
The primary objective of this study was to determine whether the development of behavioral sensitization to the putative dopamine D3 receptor agonist 7-OH-DPAT could be prevented by either selective D1-type or D2-type dopamine receptor antagonists. In three experiments, male Wistar rats (250-350 g) were given seven to nine injections (at 48-h intervals) of 7-OH-DPAT (1.0 mg/kg, SC) or vehicle in combination with the D2-type dopamine antagonist eticlopride (0.3 mg/kg, SC), the D1-type dopamine antagonist SCH 23390 (0.1 or 0.2 mg/kg, SC), or vehicle. After the injections, the rats were tested for locomotor activity in photocell arenas for 2 h. In the first two experiments, after seven injections, all rats were tested for activity following vehicle injections to test for possible conditioning effects. In each experiment, after the last pre-exposure session, all rats were given a challenge injection of 7-OH-DPAT (1.0 mg/kg, SC) and tested for activity. Major findings were as follows: a) 7-OH-DPAT treatments produced a progressively greater increase in locomotor activity with repeated treatment; b) concurrent treatment with eticlopride or SCH 23390 (0.1 and 0.2 mg/kg) blocked the acute locomotor-activating effects of 7-OH-DPAT across days; c) eticlopride, but not SCH 23390, completely blocked the development of behavioral sensitization to 7-OH-DPAT. Although the low dose of SCH 23390 (0.1 mg/kg) produced a partial attenuation of sensitization, the higher dose (0.2 mg/kg) of SCH 23390 appeared to augment, rather than block, sensitization to 7-OH-DPAT; d) rats previously treated with SCH 23390 (0.2 mg/kg, but not 0.1 mg/kg) without 7-OH-DPAT displayed a hyperactive response to the 7-OH-DPAT challenge injection; and e) after vehicle injections, rats previously given 7-OH-DPAT, SCH 23390, or eticlopride either alone or in combination were more active than vehicle control rats. These findings suggest that the neurochemical mechanisms mediating the development of behavioral sensitization to 7-OH-DPAT may differ from those of other dopamine D2-type agonists such as quinpirole or bromocriptine. Moreover, these results demonstrate that hyperactivity responses following vehicle injections in drug-pretreated animals do not necessarily reflect conditioning mechanisms.  相似文献   

16.
To assess the interaction of dopamine and acetylcholine systems in the rat nucleus accumbens in response to direct D-amphetamine administration, in vivo microdialysis measures of acetylcholine were used during reverse dialysis of amphetamine alone and in combination with D1 and D2 receptor antagonists SCH 23390 and sulpiride, respectively. During a 15-min exposure to amphetamine (50 microM) in the nucleus accumbens, acetylcholine increased to 33% above pre-infusion levels, became maximal at 15 min post-infusion (+41%) and gradually returned to baseline levels by 60 min post-amphetamine. Conversely, amphetamine (1 mM) administration caused a biphasic change in acetylcholine release with a trend toward a decrease (-14%) during exposure followed by a significant increase (+36%) at 30 min post-amphetamine that returned to baseline levels by 60 min after infusion. The increases observed during amphetamine (50 microM) exposure and during recovery from amphetamine (1 mM) were both blocked by co-administration with the D1 antagonist, SCH 23390 (10 microM), but not with the D2 antagonist, sulpiride (10 microM). Co-infusion of sulpiride eliminated the trend toward reduced acetylcholine release observed during 1 mM amphetamine whereas co-administration of SCH 23390 potentiated this decrease. A possible tonic D1 facilitation of nucleus accumbens acetylcholine release was indicated by the consistent reductions in acetylcholine release observed during infusion of SCH 23390. These results suggest that amphetamine administration in the nucleus accumbens induces a bidirectional change in acetylcholine release that is dependent on dose and opposing effects of nucleus accumbens D1 and D2 activation. In general, relatively low doses of amphetamine administered into the nucleus accumbens caused an increase in acetylcholine release that was dependent on dopamine D1 receptors whereas higher doses of amphetamine resulted in a D2-mediated decrease.  相似文献   

17.
We tested the hypothesis that aberrant dopaminergic innervation in frontal and cingulate cortices of schizophrenic patients might be revealed by examining dopamine D1 receptor density in these brain regions. A quantitative autoradiographic assay with [3H]-SCH 23390 was performed with samples from schizophrenic patients, normal controls, neuroleptic-treated controls, and suicides. There was a significant elevation in specific binding of [3H]-SCH 23390 in the intermediate layer of the prefrontal cortex from neuroleptic-treated controls (p = .05). Elevated [3H]-SCH 23390 binding in several layers from prefrontal and cingulate cortex was observed in schizophrenic subjects, although these results did not reach statistical significance. When data from subjects who had received neuroleptics (schizophrenics and neuroleptic controls) were compared to subjects who had not received neuroleptics (normal controls and suicides), there was a significant elevation in receptor density in both the prefrontal (p = .05) and cingulate cortices (p = .03). These data suggest that elevated [3H]-SCH 23390 binding in human prefrontal and cingulate cortices may occur with chronic neuroleptic treatment, although increased receptor density that may exist as a feature of psychotic illnesses cannot be excluded.  相似文献   

18.
Dopamine has been implicated in processes of retinal light and dark adaptation. In goldfish retina, horizontal cell dendrites elaborate neurite processes (spinules) into cone terminals, in a light- and dopamine-dependent manner. However, the functions of retinal dopamine and the horizontal cell spinules in visual behavior are unknown. These issues were addressed in behavioral, electroretinographic, and anatomical studies of normal fish and those with unilateral depletion of retinal dopamine induced by intraocular (i.o.) injections with 6-hydroxydopamine (6-OHDA). Dopamine interplexiform cells (DA-IPC) disappear within 2 weeks after 6-OHDA injection; cell bodies appear at the marginal zone within 6 weeks at which time neurites slowly reinnervate the retina with a sparse plexus over the next 12 months. We found that dopamine depletion increased light sensitivity at photopic but not scotopic backgrounds by 2.5 log units, an effect mimicked by i.o. injections of dopamine D1 and D2 antagonists. The ERG b-wave increment thresholds were the same for control and dopamine depleted eyes, indicating a normal transition from rod to cone systems in the ON pathway. Light-dependent spinule formation was reduced by about 60% in dopamine-depleted retinas, but returned to normal by 3 months and 9 months after injection in the entire retina, even areas not directly innervated with DA-IPC processes. Spinule formation in vivo was inhibited 50% with i.o. injection of SCH 23390 in control retinas as well as throughout 3 month 6-OHDA injected retinas, including DA-IPC free areas. This latter result indicates a volume effect of dopamine, diffusing laterally through the retina over several millimeters, in regulating spinules. We conclude that DA-IPCs regulate sensitivity to background at photopic levels not via the ON pathway, but perhaps the OFF pathway. Goldfish display both increased sensitivity to light and a normal Purkinje shift in the ERG b-wave whether or not horizontal cell spinules are present, indicating that dopamine control of photopic vision in fish is not mediated through light-induced spinule formation of horizontal cell dendrites.  相似文献   

19.
We stably expressed the rat D1A dopamine receptor in mouse fibroblast LTK- cells and obtained specific ligand binding and functional activity characteristic of the D1A dopamine receptor coupled to stimulation of adenylyl cyclase. In the transfected cells, the selective D1 agonist fenoldopam caused a concentration-dependent inhibition of Na+/K(+)-ATPase activity, achieving maximum inhibition of approximately 30%. The latter was abolished by the selective D1 antagonist (+)-SCH 23390 and by the specific protein kinase A inhibitor protein kinase inhibitor-(6-22) amide. In the nontransfected cells, fenoldopam did not affect Na+/K(+)-ATPase activity. 8-Chlorophenylthio-cAMP inhibited Na+/K(+)-ATPase activity in both transfected and nontransfected cells; this effect was blocked by protein kinase inhibitor-(6-22). These results indicate that the inhibition of Na+/K(+)-ATPase activity induced by agonist occupancy of D1A receptors is mediated by protein kinase A.  相似文献   

20.
The effects of dopamine D1 and D2 receptor antagonists on the reward processes of 10- and 17-day-old rats were assessed using the conditioned place preference paradigm. Conditioning and testing were conducted in a three-compartment chamber, with each end compartment having its own distinct tactile and odor cues (almond and lemon). During six experiments, 10- and 17-day-old rats (age at initial conditioning) were injected intraperitoneally with either saline, the dopamine D1 receptor antagonist R(+/-)-SCH 23390 hydrochloride (0.01-1.0 mg/kg), or the dopamine D2 receptor antagonists (+/-)-sulpiride (1-100 mg/kg) or S(-)-eticlopride hydrochloride (0.1-0.5 mg/kg) 30 min prior to being injected with cocaine hydrochloride (20 mg/kg) or saline. After the latter injections, rats were immediately confined in the lemon-scented (nonpreferred) compartment for 30 min. On the alternate conditioning day, rats were injected with saline and confined in the almond-scented compartment. On the third day (i.e., the test day), rats were given saline and allowed free access to the entire chamber for 15 min. The results showed that the dopamine D1 receptor antagonist SCH 23390 blocked the cocaine-induced place preference conditioning of both 10- and 17-day-old rats. Surprisingly, the dopamine D2 receptor antagonists sulpiride and eticlopride blocked the place preference conditioning of 10-day-old rats, while leaving the 17-day-old rats unaffected. These results indicate that dopamine D1 receptors are critically involved in the reward processes of preweanling rats, but that the importance of dopamine D2 receptors changes across ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号