共查询到18条相似文献,搜索用时 62 毫秒
1.
为了提取米糠水溶性膳食纤维,采用蛋白酶辅助提取米糠水溶性膳食纤维。利用Plackett-Burman试验设计和正交试验优化米糠水溶性膳食纤维提取工艺,并对米糠水溶性膳食纤维的理化性质进行研究。结果表明,碱性蛋白酶能够充分酶解米糠水溶性膳食纤维中的蛋白质,促使膳食纤维与蛋白分离,提高水溶性膳食纤维的提取率。L9(34)正交试验最终确定最优提取工艺:底物浓度0.9%,加酶量3 500 U/g,酶解pH 9.5。米糠水溶性膳食纤维的持水性为76.17%,其膨胀力为14.02 mL/g。研究结果表明,米糠水溶性膳食纤维是一种优良的食源膳食纤维。 相似文献
2.
3.
4.
5.
6.
7.
苹果渣水溶性膳食纤维的提取及脱色工艺研究 总被引:7,自引:2,他引:7
本文探讨以苹果渣为原料采用酸水解法提取水溶性膳食纤维的工艺条件,通过对提取的料液比、pH值、反应时间及温度等影响因素的研究,找到最佳提取条件;同时对产品进行脱色研究,找到较好的脱色工艺条件。 相似文献
8.
9.
10.
11.
12.
本研究采用复合纤维素酶和木聚糖酶对经过处理的玉米皮进行酶解,制备玉米皮水溶性膳食纤维(SDF),通过单因素和正交试验确立了一套最佳制备工艺。结果表明,复合纤维素酶和木聚糖酶混合改性制备SDF的最佳工艺参数为:酶添加量0.8%、酶解温度58℃、酶解pH 5.5、酶解时间8 h,SDF得率为13.82%。本方法中,玉米皮表面蛋白和淀粉杂质去除比较充分,产品纯度和得率高,工艺简单,适应工业化生产,得到的SDF产品黏度低、持水力及溶胀性好。 相似文献
13.
以米糠粕为原料,枯草芽孢杆菌(Bacillus subtilis)B4为发酵菌种,探讨不同条件下微生物发酵法对米糠粕可溶性膳食纤维(SDF)得率的影响。选择时间、温度、接菌量、pH值进行单因素试验,在此基础上进行3因素3水平中心组合设计试验。结果表明,发酵法提取可溶性膳食纤维最佳条件为发酵时间22.4 h、发酵温度35.0 ℃、接种量6.6%。在此最佳条件下,SDF得率为12.88%,比优化前提高了8.88%,微生物发酵法是一种较好的提取可溶性膳食纤维的方法。 相似文献
14.
超微粉碎对小米麸皮膳食纤维物理特性的影响 总被引:2,自引:0,他引:2
研究小米麸皮膳食纤维超微粉碎的物理特性;通过将小米麸皮膳食纤维原粉进行超微粉碎制得膳食纤维微粉,比较不同粒度的膳食纤维微粉在膨胀力、持水力、持油力、结合水力及阳离子交换能力等方面的物理性质变化;结果表明,超微粉碎后膳食纤维微粉的膨胀力、持水力、持油力、阳离子交换能力等物理性质均较原粉有较大提高,结合水力较原粉有所降低,粒度D50≤23.465μm微粉的综合指标最佳,在25、37℃时,膨胀力分别为原粉的2.3、2.2倍,持水力分别为原粉的3.1、2.9倍,持油力均为原粉的1.6倍,结合水力均为原粉的0.7倍。说明超微粉碎能够较好的改善小米麸皮膳食纤维的物理特性,可广泛应用到药品和保健食品中。 相似文献
15.
16.
17.
以稻花香米糠、长粒香米糠、籼米米糠、小米米糠、麦麸粗麸、麦麸细麸、燕麦麸皮、甜荞皮粉、苦荞皮粉、小米皮粉等10种谷物麸皮为实验原料提取水溶性膳食纤维(soluble dietary fiber, SDF),研究了其理化特性、功能特性以及分子结构之间的差异性。结果表明:苦荞皮粉SDF的持水能力最强,小米皮粉SDF的持油能力最强,麦麸细麸SDF吸水膨胀性最强。稻花香米糠SDF、长粒香米糠SDF、小米米糠SDF和甜荞皮粉SDF不具有吸水膨胀性。10种SDF葡萄糖结合能力在56.95~432.83 mg/g之间。SDF胆固醇吸附能力在0.41~66.21 mol/g之间,具有显著性差异。麦麸粗麸SDF的ABTS自由基清除率和DPPH清除率最高,小米米糠SDF羟自由基清除率最高。10种SDF总抗氧化能力在2.00~5.59μmol/g之间,具有显著性差异。扫描电镜结果显示,10种SDF微观结构不同,有的表面凹凸不平呈颗粒状,有的平滑多孔;傅里叶红外吸收光谱呈现不同的强弱峰。综上所述,不同来源SDF的分子结构、理化特性、功能特性存在明显差异性,可根据需要选择不同结构和功能的SDF进行利用。 相似文献
18.
研究了无糖水溶性米糠纤维活性乳酸菌酸奶的工艺.实验结果表明,最佳工艺条件为;纤维素酶最佳添加量为50g/L.水溶性米糠纤维添加量为10%,稳定剂添加量(PGA:CMC=1:2)为0.4%.发酵剂添加量(嗜菌:保菌:双歧=2:2:3)为4%,甜味剂(低聚果糖:蜂蜜=2:1)添加量为4%,于42℃下发酵5h,所得产品感官评分为90.5分,活菌数目达到3.2×108个/mL. 相似文献