首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 968 毫秒
1.
研究飞行器姿态稳定性控制优化问题,针对载体作长时间飞行时,由于低精度陀螺、加速度计和磁传感器使航姿系统易受到运动加速度的影响而导致姿态精度较低,甚至发散的问题,为提高稳定性能,提出在采样周期内根据陀螺输出进行姿态更新.在滤波周期内首先利用系统自身信息实时地判断载体所处运动状态,然后根据运动状态选用不同的量测信息进行卡尔曼滤波,修正陀螺漂移造成的姿态角误差.仿真结果表明,算法提高了机动情况下的姿态精度,且在非机动和机动情况下,姿态精度都能满足系统稳定性能的要求.  相似文献   

2.
航姿系统一般不实时计算速度和位置信息,无法补偿地球自转和表观运动引起的分量误差,同时陀螺漂移较大,载体长时间持续机动时,出现姿态精度不高,甚至发散的问题。提出了一种基于卡尔曼滤波的姿态融合算法,将等效陀螺漂移列入系统状态,利用卡尔曼滤波的新息对运动状态进行判别,在一定条件下,用加速度计的输出作为量测量进行卡尔曼滤波的量测更新过程。实验结果表明,所提出的姿态融合算法考虑了陀螺漂移,能提高载体长时间机动时的姿态精度。  相似文献   

3.
基于星敏感器/光纤陀螺的卫星定姿算法   总被引:6,自引:0,他引:6  
杨锋  周宗锡  刘曙光 《控制工程》2006,13(4):374-376,393
为了达到卫星三轴姿态确定的精度要求,以某一对地定向的小卫星为研究对象,提出了基于滤波算法的星敏感器和光纤陀螺组合定姿的方案。采用四元数的方法建立卫星姿态确定模型,并采用扩展卡尔曼滤波,对得到的卫星姿态误差和陀螺漂移误差信息进行信息融合和相应的修正。仿真结果表明,即使采用中等精度的陀螺组件,也可以实现高精度定姿;并且验证了星敏感器的测量噪声和滤波周期等因素对定姿精度的影响。  相似文献   

4.
针对当前无人机航姿系统对GPS信息依赖严重的特点,设计了基于MEMS ADIS16405传感器和数字信号处理器(DSC)TMS320F28335的微型惯性测姿系统。以MEMS传感器的角速度、重力加速度、航向信息,建立姿态四元数方程,解算出飞行器姿态。运用扩展卡尔曼滤波方法,消除MEMS陀螺漂移误差。DSC28335的硬件平台实现了四元数扩展卡尔曼滤波算法。转台仿真试验表明,漂移误差能在线最优估计和实时补偿,输出的航姿精度较高。该微型测姿系统具有较高的实用价值。  相似文献   

5.
卡尔曼滤波因其良好的性能广泛应用于卫星姿态确定中.经典的扩展卡尔曼滤波(EKF)算法在估计姿态坐标系中表示估计误差矢量,由于没有考虑到估计姿态坐标系与真实姿态坐标系之间存在偏差,从而导致姿态估计精度下降.针对这个问题,Andrle M S通过几何变换引入误差一致性表示,在此基础上,提出了几何扩展卡尔曼滤波(GEKF)算法,将姿态误差四元数和陀螺漂移增量通过几何变换进行一致性表示,解决了估计误差矢量表示不一致的问题.本文介绍了误差一致性表示的原理,并将GEKF算法应用于含常值漂移与时间相关漂移的陀螺模型中,仿真实验表明:GEKF算法比MEKF对陀螺漂移的估计更加精确,在滤波精度上取得了明显改善.  相似文献   

6.
针对MEMS陀螺零偏导致运动载体姿态精度下降的问题,本文以MEMS惯性测量器件MPU6050为核心,提出了一种基于改进型卡尔曼滤波的姿态估计算法,采用欧拉角作为姿态解算的基础,通过惯性测量单元(IMU)测量运动载体的姿态数据,采用改进型卡尔曼滤波,对陀螺仪和加速度计数据进行融合,并实时估计陀螺零偏。实验结果表明,本文提出的算法能够获得较高精度的姿态信息,抑制MEMS陀螺零偏引起的姿态发散,可以准确地表示运动载体在静态和动态情况下的方位。  相似文献   

7.
基于MTi微惯性航姿系统的卡尔曼滤波器设计   总被引:6,自引:0,他引:6  
本文介绍了惯性航向姿态系统中两种常用的航向姿态测量方法和MTi的组成,并以MTi微惯性航姿系统(微机械陀螺、做机械加速度计、三轴磁强计)为研究对象,构建航姿系统。给出了基于MTi的航姿系统的四元数卡尔曼滤波算法,并在卡尔曼滤波器中利用加速度计和磁强计计算的姿态角来补偿陀螺的漂移。仿真结果表明了该方法的有效性。  相似文献   

8.
小型尾坐式飞行器航姿参考系统   总被引:1,自引:0,他引:1  
针对小型尾坐式飞行器姿态实时解算问题,研究了低成本的航姿参考系统(AHRS).由于MEMS惯性器件精度较低,设计了混合卡尔曼滤波器,以姿态四元数和陀螺随机漂移为状态变量,抑制了载体长时间飞行时陀螺漂移造成的累积误差.由于加速度计输出值在除重力加速度之外的附加加速度较大时不可信,完善了判断载体运动状态的方法,根据加速度计的实际输出,选择加速度值或者磁场强度作为观测量.实验结果表明,设计的算法在精度和计算效率方面都能满足控制系统的需求,更加适用于对实时性有较高要求的飞行器.  相似文献   

9.
陀螺漂移会对捷联惯性导航系统的导航定位误差产生直接的影响,所以需要用实验的方法标定出陀螺漂移,并进行补偿;陀螺漂移随时间和环境变化,因此采用实验室标定方法会降低系统的精度;文章提出一种基于卡尔曼滤波技术的现场标定方法,给出了现场标定时系统的状态方程,分别推导了采用速度、速度加姿态为观测信息时的量测方程;利用奇异值可观测度分析方法比较机动状态不同,观测信息不同的五种现场标定方案的陀螺漂移的可观测度,从而确定了两种最优现场标定方案,即在以速度为外部观测量的情况下,使载体处于“S”型机动状态和在载体静止的情况下,速度加姿态为观测信息;通过仿真实验验证了这两种标定方案可以有效提高现场标定的精度。  相似文献   

10.
研究无人机捷联导航姿态精度优化问题,针对微小型无人机做连续大机动飞行时,MEMS器件用于载体航姿测量精度低、易发散的问题,提出了一种基于UKF技术的姿态融合算法.用重力加速度在机体系的分量和陀螺漂移做为待估的状态量,建立了非线性的滤波模型.在系统模型噪声为复杂加性噪声且量测方程为线性方程时,推导出简化UKF算法.为了验证上述算法的有效性,将UKF和EKF算法进行对比,并通过姿态误差均值和均方差对实验结果进行定量分析.仿真结果表明,数据融合判别准则合理可行,改进算法提高了载体机动情况下的姿态精度,达到了预期的要求.  相似文献   

11.
基于机动检测的捷联航姿算法研究   总被引:1,自引:0,他引:1  
针对低精度陀螺仪、加速度计和磁传感器组成的捷联航姿系统存在的易受载体运动加速度影响而导致姿态精度下降甚至发散的问题进行了研究,提出了一种基于机动检测的捷联航姿算法。该算法根据陀螺仪数据进行姿态实时更新,利用加速度计和磁传感器输出对载体姿态误差进行校正以保持航姿输出的长期精度。算法根据加速度计输出在导航系中投影的水平分量进行机动检测,剔除机动期间的加速度数据,利用载体匀速运动状态下的加速度数据与磁传感器数据构造量测,利用卡尔曼滤波器对姿态误差进行估计并修正。仿真结果表明,该算法能有效完成载体机动检测,保证系统存在机动的情况下姿态精度满足应用要求。  相似文献   

12.
本文提出了基于固态传感器的航姿系统设计方案,介绍了基于四元数的航姿求解方法,设计了多传感器融合的卡尔曼滤波器。仿真结果表明,该算法在保证精度的同时能有效地估算出陀螺漂移。以TMS320F28335处理器为核心构建了硬件系统。实验结果表明,该设计能满足航姿系统对精度和速度的要求。  相似文献   

13.
基于卡尔曼滤波的航姿参考系统设计   总被引:1,自引:0,他引:1  
针对传统的航姿参考系统AHRS(Attitude and Heading Reference System)中姿态角精度不高的问题,设计了一种新型的基于卡尔曼滤波的姿态检测系统。该系统采用了三轴磁传感器、三轴陀螺仪及三轴加速度计,用四元数的方法来描述载体运动的姿态,通过陀螺仪测姿态四元数,卡尔曼滤波算法融合加速度计和磁传感器数据,对姿态四元数进行修正,从而提高姿态解算精度。实验数据表明,系统能够较好修正陀螺仪漂移,且三个角度的均方根误差均优于0.25°,具有良好的噪声抑制能力。  相似文献   

14.
基于DSP的航姿系统多传感器信息融合技术   总被引:2,自引:0,他引:2  
设计了基于DSP的专用导航计算机,并以此为硬件平台,采集陀螺仪、加速度计、磁航向传感器和速度传感器信号,利用卡尔曼滤波技术进行多传感器信息融合,成功搭建了低成本小型航姿系统。针对该航姿系统的特点,设计了导航计算机程序快速更新软件,对卡尔曼滤波器进行低阶处理。针对导航计算机“数字信号处理器(DSP)+单片机(MCU)”的特殊结构,设计了合理的多传感器信息融合程序。实验证明:航姿系统利用多传感器信息融合技术,使用自行研制的专用导航计算机平台,姿态误差小于0.2,°航向误差小于0.5°,且大大减小了系统成本、体积和功率,具有实际应用价值。  相似文献   

15.
磁航向角是备份航姿系统的重要输出参数,为提高测量性能,需对磁传感器进行误差标定。对于机载应用的磁传感器,地面标定方法需要耗费大量的时间且操作不便,在地表标定结果的适用性随距离标定的时间和使用空间位置的变化而降低。基于备份航姿系统的实际工作特点,提出一种在备份状态下利用飞机主惯导的姿态角信息对磁传感器误差进行在线校准的方案,设计了误差校准数据存储的数据结构,提出了校准数据对航向空间覆盖的充分性评价策略,最后利用无磁转台模拟环境,验证了某备份航姿系统的磁传感器在线校准方案的可行性和有效性。  相似文献   

16.
为了满足低成本、高性能的载体测姿需求,针对MEMS器件漂移导致载体姿态无法准确测量的问题,提出了一种基于方向余弦矩阵(DCM)更新的多轴显式互补滤波载体姿态估计算法。利用陀螺仪和辅助传感器的噪声所处频段互补的特点,运用互补滤波进行信息融合,发挥各个传感器的优点,提升系统的姿态测量精度。分别以三轴转台与实验车辆为验证平台,设计了静态与动态实验。实验结果表明,该姿态融合算法能够稳定输出高精度的姿态信息,抑制陀螺漂移导致的姿态发散,有效提高载体姿态的测量精度,满足捷联惯导系统的测姿需求。  相似文献   

17.
设计了一种基于MEMS陀螺仪、加速度计、磁传感器的小型姿态航向参考系统;以四元数和角速率偏差为状态矢量,磁场强度和加速度计信息为量测矢量,构建基于Kalman的四元数姿态航向解算方法;通过调整测量噪声方差矩阵,解决动态过程中由于运动加速度造成的姿态角误差;采用陀螺仪误差建模和磁航向罗差补偿技术,进一步提高了系统测量精度。根据飞行数据分析,姿态航向参考系统具有较高测量精度和较好的稳定性、动态性,姿态角均方根误差小于1.5°,航向角均方根误差小于3°。  相似文献   

18.
An accurate attitude and heading reference system (AHRS) is a key component to ensuring safe and reliable flight of unmanned aerial vehicles (UAVs). Recently, much attention has been given to developing AHRS using inertial sensors based on microelectromechanical sytems (MEMS). These MEMS-based AHRS are low-cost, lightweight, and consume little power. However, the advantages of inexpensive MEMS sensors are coupled with the drawback of having greater potential error in reported roll, pitch, and yaw angles due to increased sensor noise and drift. To minimize this error, advanced sensor fusion techniques such as Kalman Filtering are commonly implemented. Testing these techniques, and the AHRS as a whole, is therefore a crucial part of the performance optimization process. This paper outlines the development of an inexpensive 3-axis motion platform for AHRS calibration and testing that replicates aircraft motions from actual UAV flights, or from a flight simulator. To accomplish this, custom LabVIEW control software was developed to process time-stamped aircraft orientation data. Commands were then sent through a microcontroller to the motion platform, which reconstructs the flights with high precision (R2 = .994). By using this method, AHRS testing can be performed under more realistic conditions, providing an alternative to costly field testing. This technique is especially useful for simulations of autonomous vehicle technologies such as collision avoidance, where an increased risk of damage to the UAV is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号