首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
超声模式对GMAW短路过渡行为与焊缝成形的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
文中研究了连续输出的超声与脉冲输出的超声对GMAW短路过渡行为与焊缝成形的影响.结果表明,焊接过程中引入连续超声与脉冲超声均能改善GMAW短路过渡行为与焊缝成形.两种模式对熔滴过渡行为的影响基本一致;在焊缝成形方面,连续超声对于焊缝熔深的影响更为显著.具体结果为普通GMAW短路过渡周期约为86.5 ms;连续超声辅助GMAW短路过渡周期约为79 ms;脉冲超声辅助GMAW短路过渡周期约为76.5 ms.普通GMAW的熔宽为5.06 mm、熔深为0.361 mm,焊缝余高为1.253 mm. 与普通GMAW相比,连续超声辅助GMAW焊缝熔宽减小了0.4 mm,焊缝熔深增加了100%;脉冲超声辅助GMAW焊缝熔宽减小了0.19 mm,焊缝熔深增加了67.6%.  相似文献   

2.
2219铝合金激光驱动GMAW熔滴过渡行为   总被引:1,自引:1,他引:0       下载免费PDF全文
以2219铝合金为研究对象,搭建了激光驱动GMAW熔滴过渡试验系统,采用高速摄像系统拍摄熔滴过渡行为,分析了激光的加入对熔滴过渡行为的影响. 结果表明,通过改变工艺参数,激光的加入改变了熔滴的受力状态从而改变了熔滴过渡模式和飞行轨迹. 脉冲激光作用在熔滴缩颈处形成的蒸发反力可以有效促进熔滴过渡,得到“一脉一滴”的射滴过渡形式,提高熔滴过渡频率和熔滴过渡的稳定性,同时能够有效改善焊缝成形解决铝合金焊接射滴过渡工艺区间窄,对母材热输入高以及焊接过程稳定性差等问题.  相似文献   

3.
脉冲激光驱动的GMAW短路过渡行为控制   总被引:1,自引:1,他引:0  
试验研究了单侧脉冲激光照射熔滴控制短路过渡的行为.高能量密度的瞬时脉冲激光作用在熔滴上,产生的局部强烈的蒸发反力驱动熔滴受迫短路,形成液桥,完成收缩、破断,促进熔滴脱离焊丝.在无电弧条件下观察单侧脉冲激光驱动熔滴过渡的基础上,进一步分析了小电流下单侧脉冲激光驱动短路过渡的效果.结果表明,在焊接过程中施加一定能量密度和频率的脉冲激光对短路过渡行为有明显的改善作用,并能通过脉冲激光功率控制熔滴的尺寸,调节脉冲激光频率控制熔滴过渡频率,实现一脉一滴的过渡形式,提高焊接过程的稳定性.  相似文献   

4.
GMAW焊接方法在工业中应用范围广泛,但GMAW焊接中短路过渡存在飞溅问题.针对与这些问题已经有很多方法解决,如:在回路中串入电感、电流波形控制、表面张力过渡、冷金属过渡等.以上各种改善短路过渡飞溅的方法都能在一定的使用范围内改善短路过渡飞溅问题,但也存在着生产效率低、熔深浅、焊缝成形不好等局限性.将激光热源引入到短路过渡方法中,激光-电弧复合热源焊接在保证焊接稳定性的同时也提高了焊接速度,改善焊缝成形,很大程度上扩大了短路过渡的应用范围.通过SFBT、PIT方法和自由边界模型的VOF方法,对GMAW焊接熔滴过渡理论进行不断深入的研究.  相似文献   

5.
基于脉冲激光的GMAW熔滴过渡解耦控制   总被引:1,自引:1,他引:0       下载免费PDF全文
实现电流解耦的熔滴过渡,在足够低的焊接电流下仍能获得稳定的细颗粒或射滴过渡,将从根本上提升熔化极气体保护焊(GMAW)过程的稳定性和焊接质量.为此,文中提出了一种采用激光脉冲照射熔滴,利用蒸发反冲力驱动熔滴过渡的新方法.首先试验观测了光致蒸发现象,初步分析了激光蒸发反冲力的特征.进而观测分析了小电流下脉冲激光控制熔滴过渡的效果.结果表明,采用激光脉冲照射能够实现熔滴过渡与焊接电流的完全解耦,熔滴过渡随激光脉冲表现为一脉一滴的形式,熔滴飞行轨迹沿激光入射方向有一定偏转,但对焊缝成形无不良影响.  相似文献   

6.
激光-脉冲GMAW复合焊接和激光-连续GMAW复合焊接两种热源形式在复合焊接中使用范围广,应用前景好.系统研究这两种热源形式和脉冲GMAW焊接以及连续GMAW焊接在焊接过程中的电参数变化特征及焊缝的形状尺寸.结果表明,激光-脉冲GMAW复合焊接中电参数平稳,焊接过程稳定,可有效地促进熔滴过渡,并且获得的焊缝尺寸较理想,熔深大、余高小,但激光功率3000W的复合焊接短路时电参数波动性增大.  相似文献   

7.
基于高速摄像图片和熔滴力学模型分析不同空间位置下不锈钢激光-MAG复合焊接的熔滴过渡行为及焊缝形貌特征。结果表明:送丝速度为7、9 m/min的激光-MAG复合焊接的熔滴过渡模式分别为短路过渡和射滴过渡。不同空间位置焊接的短路过渡时间差别较大,而射滴过渡周期很接近,均在10~14 ms。平焊和横焊的焊缝成形较好,焊缝熔深随激光功率的增加而递增,平焊焊缝的熔深均大于横焊。激光的加入使横焊焊缝熔宽显著增大,平焊焊缝的熔宽均小于横焊焊缝。立向下焊焊缝表面成形优于立向上焊。  相似文献   

8.
黄勇  张佳杰  冉小龙  毛宇 《焊接学报》2019,40(12):68-72
采用环保焊枪进行了小电流二氧化碳气体保护电弧焊平焊位置焊接,通过分析焊接过程中电弧形貌、电流电压和熔滴过渡方式变化以及焊缝成形、焊缝金属拉伸力学性能和X射线探伤结果,评估了吸烟功率变化时的吸烟效果以及吸烟行为对于焊接过程和焊缝质量的影响规律. 结果表明,使用环保焊枪可以显著降低小电流二氧化碳气体保护电弧焊时飘散在周围空间中的焊接烟尘. 吸烟过程虽然使得短路过渡熔滴频率略有增加,悬挂熔滴和电弧的稳定性略为变差,但对焊缝成形和焊接缺陷都无影响,焊缝金属屈服强度略有减小,抗拉强度略有增加.  相似文献   

9.
《电焊机》2017,(8)
激光-脉冲GMAW复合焊接和激光-连续GMAW复合焊接两种热源形式在复合焊接中使用范围广,应用前景好。系统研究这两种热源形式和脉冲GMAW焊接以及连续GMAW焊接在焊接过程中的电参数变化特征及焊缝的形状尺寸。结果表明,激光-脉冲GMAW复合焊接中电参数平稳,焊接过程稳定,可有效地促进熔滴过渡,并且获得的焊缝尺寸较理想,熔深大、余高小,但激光功率3 000 W的复合焊接短路时电参数波动性增大。  相似文献   

10.
旋转电弧GMAW堆焊短路过渡熔池动态仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究旋转电弧GMAW堆焊短路过渡时熔池的温度和对流分布规律,利用Flow-3D软件建立三维数学模型,采用球形旋转热源模型,考虑重力、熔滴拖拽力、表面张力、浮力作用,模拟了堆焊状态下,工件材料为Q235的旋转电弧GMAW短路过渡的熔池成形规律. 采用流体体积法追踪熔滴过渡和熔池表面的自由变形,并分析熔滴进入熔池时熔池内部温度场和流场的变化. 结果表明,熔池形成过程中,旋转熔滴对熔池有搅拌作用,并使熔池内部液态金属活性增强,流速变快,熔池内部液态金属体积变大,熔池的宽度变大. 模拟预测的焊缝尺寸、形状与试验吻合良好. 为优化焊接工艺参数、改善旋转电弧GMAW堆焊焊缝质量提供参考依据.  相似文献   

11.
采用脉冲熔化极惰性气体保护焊(MIG)的方法焊接304不锈钢,在试验中利用电信号采集系统和高速摄像进行同步采集,研究熔滴过渡情况. 结果表明,送丝速度调节适当时,可以实现一脉一滴的射滴过渡形式. 送丝速度偏大时,焊接过程中会夹杂部分瞬时短路过渡,短路时间小于1 ms,影响焊接过程的稳定性. 当采用激光-脉冲MIG复合焊时,对瞬时短路现象有改善作用. 在一定范围内,激光功率增加,瞬时短路过渡出现的次数减少,改善作用增强. 当激光功率达到一定阈值时可完全消除瞬时短路现象,实现一脉一滴的过渡形式,焊接过程稳定. 即激光的加入提升了焊接品质与焊接效率.  相似文献   

12.
从全系统的角度建立了短路过渡GMAW系统的动态模型.在研究了短路过渡GMAW过程各物理量相互关系的基础上,在一定的条件下,以焊接回路模型为主体,进行了短路过渡GMAW过程全系统的动态模型建立,其中的液桥形状动态模型则采用了能量最小原理.在建立的动态模型基础上进行了仿真计算和误差分析,并进一步与实际的焊接过程进行了比较.  相似文献   

13.
CO2气体保护焊短路过渡过程的闭环实时控制   总被引:7,自引:2,他引:5       下载免费PDF全文
为了减少CO2气体保护短路过渡焊的飞溅,本文提出了短路过渡过程的闭环实时控制思想并进行了试验研究。在熔滴与熔池发生短路及液体小桥爆断这两个最容产生飞溅的时刻,利用大功率电子关元件切换焊接回路外串电阻的方法及时降低焊接回路中的电流。在前一时刻维持较低电流至溶滴与熔池充分接触,在后一时刻维持较低电流至熔滴过渡完毕,该方法能有效地抑制由瞬时短路造成的大颗粒飞溅和由电爆炸产生的细颗粒飞溅,实现了CO2气体保护焊短路过渡过程的闭环实时控制。  相似文献   

14.
针对细丝短路过渡焊,采用以实现最高短路过渡频率为目标的自寻优模糊控制,可以使电弧电压与唯一设定值焊接电流形成优化匹配获得最高短路过渡频率,达到稳定熔滴过渡、减少飞溅和改善成形的目的.但试验发现这一控制策略用于半短路过渡焊,则无论电流选多大,电弧电压常维持在20V左右,所焊焊缝熔宽窄,余高大,熔深浅.显然,对于半短路过渡焊的电弧电压仍采用以实现最高短路过渡频率为寻优目标的控制策略是不够全面的.针对这一情况,研制了一种以可编程控制器(PLC)为核心器件,通过自主开发软件自动实现对半短路过渡焊电弧电压寻优的智能控制.系统以实现较高短路频率和较长燃弧占空比为复合寻优目标,对电弧电压进行优选法和变步长法分段自寻优,寻优后的电弧电压与设定的焊接电流形成优化匹配,获得稳定的半短路过渡过程.  相似文献   

15.
Abstract

Ultrasonic assisted gas metal arc welding (U-GMAW) has been recently developed to improve the metal transfer characteristics. The ultrasonic wave is applied on the metal transfer process by means of an acoustic field. Welding electrical signal measurement and high speed camera are employed to study the differences of short circuiting metal transfer between conventional GMAW and U-GMAW. Compared with the conventional GMAW, the short circuit frequencies of U-GMAW are obviously increased under the same welding parameters. Moreover, the voltage range of the stable short circuiting transfer is enlarged, and the weld appearances become more uniform with the action of the ultrasonic wave. The high speed video images indicate that the U-GMAW arc is compressed and the electrical field intensity is increased. The decrease in the arc length is the main reason for the increase in the short circuit frequency.  相似文献   

16.
GMAW短路过渡过程中瞬时短路现象的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王广伟  蔡艳  华学明  吴毅雄 《焊接学报》2007,28(9):43-46, 102
对GMAW短路过渡过程中的瞬时短路现象进行了力学动态分析,建立了基于熔滴液体压力、电磁收缩力、表面张力的瞬时短路力动态平衡临界条件.通过微距高速摄影技术和图像处理技术,获得了熔滴半径的变化数据,并结合电信号分析.结果表明,计算所得数值所反映的短路进程状态和图像所示的完全吻合,认为瞬时短路力动态平衡临界条件真实有效.并进一步基于此临界条件分析了熔滴形态对瞬时短路的影响,认为熔滴和熔池接触瞬间的径向半径如果小于轴向半径,则接触处的径向表面张力所产生的压力大于零,瞬时短路开始且不可逆,即纺锤形熔滴易造成瞬时短路.最后对瞬时短路现象进行了分类和定量研究,并提出了瞬时短路现象的新的解释.  相似文献   

17.
利用Matlab/Simulink对全数字控制CO2焊的短路过渡过程进行了仿真,建立了“功率变换电路单元一数字控制单元一送丝单元一短路过渡负载单元”的CO2焊系统仿真模型,从整体上对CO2焊全数字控制逆变焊机系统进行了研究。短路过渡负载模型中考虑了燃弧期间和短路期间熔滴的动态变化过程,采用电弧弧长和电爆炸理论来确定短路燃弧与否,从而使数字控制的效果直接在熔滴行为和电弧行为上得以体现。仿真波形与试验结果基本一致,证明所建的系统仿真模型是正确的。  相似文献   

18.
双丝间接电弧氩弧焊的熔滴过渡   总被引:3,自引:2,他引:1  
采用氙灯背光高速摄像系统及示波器对双丝间接电弧氩气保护焊的熔滴过渡及其对应的电压、电流波形进行了研究.结果表明,双丝间接电弧氩弧焊焊接电流与电弧电压的不同匹配选择,熔滴具有短路过渡、大滴过渡、混合过渡、射滴过渡、射流过渡等不同过渡形式.随着焊接电流的增大熔滴尺寸减小,熔滴细化,随电弧电压的增大,熔滴尺寸减小.熔滴过渡形式与电压、电流的波形之间有很好的对应关系.  相似文献   

19.
提出了气体保护焊短路过渡过程中的熔滴成形的概念,并建立了模型.通过微距高速摄像技术和数字图像处理技术对熔滴成形过程中小滴状熔液所受的重力、电磁力以及表面张力提供的支持力进行了分析和定量计算,认为表面张力所提供的支持力远大于电磁力和重力共同导致的促使小滴状熔液下落的力.同时考虑了焊丝的熔化,认为以上因素最终造成小滴状熔液能以滴状的形态不断在焊丝端面进行扩展,形成熔滴.试验证明了熔滴成形这一模型的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号