首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钍基熔盐堆是第四代核能系统的候选堆型之一,熔盐由于优异的传热性能与中子特性,被作为冷却剂和燃料盐载体在堆内运行,其微观结构对其物理化学性质有重大影响,因此,研究熔盐结构对熔盐制备净化、腐蚀控制以及熔盐堆的设计、建造和安全运行都有重要的指导作用。红外吸收光谱(Infrared Absorption Spectroscopy,IR)是研究熔盐结构的有力工具之一,但标准仪器无法实现高温(500oC)熔盐的测量。本研究在解决了样品加热、环境气氛控制以及腐蚀等难题后,研制了一套适用于高温氟化熔盐实验的高温原位红外吸收光谱装置。该装置中,加热炉为左右两开式,可以直接放进标准红外光谱仪样品仓内;样品池为组装式,主体是能够耐氟化熔盐腐蚀的镍基哈氏合金,窗片为单晶Si C或金刚石;样品池整体呈倒"T"型,上端密封盖带有进气口和出气口,可实现抽真空或通惰性气体的操作。该装置可以实现25-600oC温度范围测量,波段范围覆盖近红外和中红外(14 700-400 cm~(-1))。通过使用常温水和高温亚硝酸钠的红外光谱实验对该装置的可靠性进行了验证。利用该装置,我们成功地获得了高温氟锂铍(FLi Be)熔盐的红外吸收光谱。  相似文献   

2.
氟盐具有化学与辐射稳定性高、热容量大、传热性能好、运行温度高和蒸汽压低等优点,被用作熔盐堆的燃料载体和冷却剂。随着熔盐堆技术的发展,开发熔盐的净化、回收工艺非常必要。熔盐减压蒸馏技术基于物质挥发性差异进行组分分离,由于过程操作简单、不引入新的物质等特点,在燃料处理过程中有广泛应用。利用减压蒸馏技术对钍基熔盐堆核能系统的载体盐回收、电解产物纯化、模拟燃料球去除浸渗熔盐等方面进行了研究。研究结果表明,含CsF、SrF_2、LaF_3和ThF_4的FLiNaK盐经减压蒸馏处理,可从FLiNaK中除去SrF_2和LaF_3,去污因子分别为4.4×10~3和1.9×10~3,Th的去污因子为94;通过蒸馏可去除电解产物表面夹带的氟盐,纯化电解产物;燃料球中浸渗熔盐在1 085℃下处理37h可去除石墨球中94%的浸渗熔盐。  相似文献   

3.
锂(Li)元素是液态熔盐堆中冷却剂熔盐的重要组成成分,由于6Li相对~7Li具有较大的中子吸收截面,其在冷却剂熔盐中的摩尔含量会影响液态熔盐堆的钍铀转换性能,因此研究~7Li富集度对液态熔盐堆钍铀转换性能的影响十分必要。基于熔盐快堆(Molten Salt Fast Reactor,MSFR)的堆芯结构,分别采用FLi和FLiBe两种不同的冷却剂熔盐,选取范围在99.5%~99.995%的一系列~7Li富集度,借助熔盐堆后处理程序MSR-RS(Molten Salt Reactor Reprocessing Sequence),针对能谱、233U初装量、钍铀转换比、233U净产量和倍增时间、Li的演化以及氚产量等一系列参数进行分析。研究结果表明:在MSFR的堆芯中,较FLiBe而言,采用FLi作载体盐能够获得更好的钍铀转换性能;当~7Li富集度由99.995%变为99.9%时,堆芯钍铀转换比降低约1.6%,氚产量增加约8%。综合考虑燃料制造成本和钍铀转换性能等因素,对于分别采用FLi和FLiBe作载体盐的熔盐快堆MSFR,推荐的~7Li富集度都为99.9%。  相似文献   

4.
高温熔盐流量计在高温熔盐反应堆、太阳能发电、高温制氢等熔盐集热储能装置中具有良好的应用前景。而目前市场上流量计受材料特性的影响,最高只能在535?C以下使用,并不能满足这些应用场合的高温运行环境要求。研究表明通过改进超声波流量计波导片增加其耐温性能,可满足大于650?C的高温测量要求,然而目前并没有标准的流量计或标定装置能对其进行标定。钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)项目迫切需要建立一个熔盐流量标定平台,提供熔盐的标准流量标定,它的基本参数需满足目标流速1-5 m·s-1、工作温度小于800?C、管径约50 mm、标定误差小于5%、熔盐用量小于200 L等。构建了基于气压控制熔盐流速的物理模型,推导出系统流速的具体表达式,分析控制管道熔盐压差的比例、积分和微分(Proportion-Integration-Differentiation,PID)算法对流速稳定性的影响。通过MATLAB软件仿真,确定了可行性的控制方案参数,并为仪控元件的选型提供了依据。  相似文献   

5.
氟锂铍(FLiBe)熔盐作为液态熔盐堆的冷却剂和载体盐,具有一定的慢化性能,其热中子散射数据影响熔盐堆的中子学性能,进而影响熔盐堆物理设计和安全运行。基于通用蒙特卡罗粒子输运程序分析了液态FLiBe熔盐的热中子散射数据对65 MW熔盐堆堆芯中子能谱、不同能谱下有效增殖因数keff、核素反应率、温度反应性系数等中子学性能的影响。研究结果表明:考虑FLiBe熔盐热散射效应,堆芯中子能谱变硬,导致235U裂变反应率和keff变小,燃料的温度反应性系数中多普勒系数减小0.28×10-5 K-1,而密度反应性系数几乎无变化。当堆芯由热谱转变为相对较快的中子能谱时,FLiBe熔盐热散射效应导致235U裂变率减少的变化量降低,keff的下降幅度从9.2×10-4变为2×10-4。因此,熔盐堆堆芯物理计算需开展FLiBe熔盐的热中子散射数据影响的量化。  相似文献   

6.
NaNO_3-KNO_3-NaNO_2(Hitec)熔盐作为一种理想的中高温传储热介质,未来有望在太阳能热利用等领域展开广泛应用。但其作为中温储热介质而言,其比热和导热性能相对较低,若能提高其比热和导热系数无疑将在太阳能热利用等实际应用中具有很重要的意义。采用水法技术制备了纳米TiO_2/Hitec熔盐复合储热介质,采用不同的表征技术研究了不同粒径、不同添加量纳米TiO_2颗粒对复合储热介质的比热、导热系数和热稳定性的影响。结果表明:与Hitec熔盐相比,纳米TiO_2颗粒明显提高了熔盐复合储热介质的储热特性。其中25 nm粒径,添加质量分数为0.062 5%纳米TiO_2对Hitec熔盐复合储热介质的比热(提高12%)和导热系数(增大15%)增强显著,同时热稳定性也得到改善。  相似文献   

7.
钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)是第四代核反应堆的代表之一,其特点是以熔融氟盐作为冷却剂和燃料的载体。在熔盐堆中,熔盐容易浸渗到核石墨内部,引发核石墨局部高温,造成核石墨损伤程度增加,严重破坏核石墨的结构,从而影响核石墨材料的宏观性能和使用寿命。然而,熔盐浸渗对核石墨力学性能的微观机制以及熔盐浸渗引起的微结构损伤或破坏机制目前仍不清晰,因此有待进一步研究原位环境下(如力学加载、高温等)熔盐浸渗对核石墨微结构的影响,并揭示微结构演化的相关机制。本文基于同步辐射原位拉伸X射线衍射技术(Two Dimensional X-ray Diffraction,2D-XRD),开展了外部载荷为0 N、15 N、21 N、27 N和32 N时熔盐浸渗后的核石墨IG-110在拉伸断裂过程中的微观结构演化研究,以揭示外部载荷条件下的核石墨IG-110与熔盐之间的原位实时相互作用及材料断裂的微观机制。实验结果表明:在拉伸断裂过程中外部载荷使熔盐浸渗后的核石墨IG-110的结晶性变差、层间距变大,同时FLiNaK盐的结晶性也明显变差。这一发现将有助于解释熔盐浸渗后核石墨IG-110力学性能的变化,理解核石墨IG-110与FLiNaK熔盐间的相互作用机理,有利于高性能核石墨的制备和TMSR的安全可靠运行分析。  相似文献   

8.
高温熔盐在熔盐堆和太阳能等能源领域有广泛的应用前景。为研究熔盐在强化换热管中的强化传热效果,本文基于三元硝酸盐KNO_3-NaNO_2-NaNO_3(摩尔分数比为53%-40%-7%)与导热油的对流传热实验装置,根据相似理论使用导热油代替熔盐,对翅片换热管湍流区的对流传热特性开展了测量,流体雷诺数(Re)变化范围10 000-60 000。通过威尔逊分离法获得翅片管中湍流区的对流传热系数(ho)和努赛尔数(Nu),基于实验数据与Dittus-Boelter公式,拟合翅片管湍流区的对流传热关联式,实验数据与拟合公式的误差在-7.1%-7.5%之间。与传统对流传热关联式Dittus-Boelter公式对比进行强化传热效果评估,结果表明,翅片管的强化传热效果为光滑管的2.32-3.63倍。  相似文献   

9.
钍的分离和再利用是熔盐堆钍铀燃料循环的重要组成部分,钍与裂变产物特别是化学性质相似的镧系元素的分离是熔盐堆氟盐燃料处理的关键之一。利用循环伏安法和方波伏安法研究了773 K下多种镧系元素氟化物(w=3%)在LnF_3-LiCl-KCl熔盐中的电化学行为。研究结果表明:Ce~(3+)和Gd~(3+)在惰性电极上均一步还原为金属,Nd~(3+)则是通过两步反应还原为金属,而Sm~(3+)和Eu~(3+)只能还原为低价态的Sm~(2+)和Eu~(2+);Th和Ln在惰性金属阴极上的析出电位差ΔE均大于0.19 V,在LiCl-KCl熔盐体系中实现Th与Ln的电化学分离在理论上是可行的;与纯氯盐体系相比,少量F-的引入不会改变Ln~(3+)在惰性电极上的电极反应过程,F-的存在使得Ln~(3+)在LiCl-KCl熔盐中的活度降低,从而导致扩散系数减小。此研究结果为了解Th4+)和Ln~(3+)在含F-氯盐体系中的电化学行为和建立可行的分离方法提供了基础实验依据。  相似文献   

10.
利用氧化物沉淀-减压蒸馏耦合法研究FLiNaK熔盐体系中氟化物的蒸发行为及稀土Nd的分离。高温下氧化物CaO与稀土氟化物NdF_3反应形成难溶于熔盐的稀土氧化物,通过减压蒸馏蒸发、收集冷凝FLiNaK熔盐,提高稀土与熔盐的分离度,促进熔盐的回收利用。研究表明,含有NdF_3(w=3%)的FLiNaK熔盐中加入CaO,730°C下反应6 h,n(NdF_3):n(CaO)=1:3时NdF_3的转化率达95%。X射线衍射(X-ray Diffraction,XRD)分析表明生成的Nd_2O_3主要沉淀在熔盐的底部。经730°C高温沉淀、930°C熔盐蒸馏,冷凝盐中稀土Nd的去污因子达9.4′105,而未经沉淀处理Nd的去污因子为3.1′104,表明高温沉淀蒸馏耦合法使稀土NdF_3转化为氧化物Nd_2O_3,显著增大稀土与FLiNaK的分离度,提高收集盐的纯度。  相似文献   

11.
为研究Li_3AlF_6作为LiF-BeF_2模拟盐在混合熔盐中的高温水解行为,首先制备了一定比例的Li_3AlF_6熔盐,采用X射线衍射法(XRD)、Raman光谱和热重分析(TG-DSC)等分析手段对其结构进行了表征,并对LiF、AlF_3及Li_3AlF_6熔盐的高温水解行为进行了研究。分析结果表明,LiF和AlF_3在一定温度和摩尔比条件下可生成不同晶型的Li_3AlF_6,高温水解与溶解实验及离子色谱分析结果表明,Li_3AlF_6熔盐的高温水解产物为LiAlO_2,且不含氟离子,证明在现有实验条件下可实现该氟化物到氧化物的转化,为后续高温水解实验在水法后处理流程中的应用提供了基础数据。  相似文献   

12.
与传统加速器驱动次临界系统(ADS)采用金属靶作为散裂中子靶的设计不同,加速器驱动次临界熔盐堆(AD-MSRs)采用靶堆一体的设计,直接使用燃料熔盐作为散裂中子靶。由于熔盐靶的中子学性能直接影响AD-MSRs的能量放大系数、核废物的嬗变和核燃料增殖的效率,所以本研究基于MCNPX程序,详细计算了高能质子轰击氟盐和氯盐两种熔盐靶产生的散裂中子产额、散裂中子能谱、能量沉积分布以及散裂产物等中子学性能,并与液态Pb和铅铋共熔体(LBE)两种液态金属靶进行了对比。计算结果表明,熔盐靶在散裂中子产额上与液态金属靶有一定的差距,但熔盐靶内能量沉积分布的梯度较小,更有利于靶区的热量导出。与液态Pb和LBE靶相比,熔盐靶的散裂产物中包含更多的气体以及高质量数的α发射体核素。  相似文献   

13.
氯化锂-氯化钾共晶熔盐是电解精炼干法后处理中最常用的电解质,其含有的杂质直接影响电流效率和产物纯度。本研究分别采用高温处理、HCl气体鼓泡和恒电位电解等方法依次去除了熔盐中的易挥发物质、氧离子和金属离子等杂质,获得了较高纯度的熔盐。采用热重分析(TGA)、电化学和电感耦合等离子体原子发射光谱(ICP-AES)等方法对比了纯化前后熔盐中各杂质的含量。研究结果表明:去除易挥发杂质的最佳处理温度范围为450~650℃;去除杂质金属离子时最佳电解电位为-2.3Vvs.Ag/AgCl(摩尔分数2%),恒电位电解800s后杂质金属离子总量低于1.5×10-6 g/g(盐)。以上研究结果表明,采用高温处理、HCl气体鼓入和恒电位电解可获得纯度较高的LiCl-KCl共晶熔盐。  相似文献   

14.
钍基熔盐堆核能系统(TMSR)计划建设热功率2 MW的液态燃料熔盐堆。在熔盐泵、换热器、冷冻阀等设备原理样机研制基础上,需要设计并建造高温氟盐回路对上述设备进行运行考验。首先设定熔盐-空气换热器换热功率为200 kW,根据经典热量方程及预定流速法确定系统流量为15 m3/h、管径为DN50(公称直径为50 mm)。采用Fluent数值计算确定系统压损为155 kPa,考虑一定裕量后熔盐泵扬程确定为20 m。为解决管道在高温工况下热应力集中问题,除熔盐泵固定安装外,加热器及换热器设计采用了万向球移动支承结构以增加系统柔性。自建成以来,回路累计运行超过4000 h,相关设备及系统结构设计得到验证。系统实际压损为110~120 kPa,仍需采用差压计进行实测验证。熔盐杂质含量分析表明,系统运行后Cr、Mo等杂质元素含量提高了2个数量级,说明存在材料腐蚀。回路内水氧含量控制水平需要在100 μL/L设计限值基础上进一步提高。   相似文献   

15.
在熔盐堆核能系统中,为避免载体盐中含氧类杂质离子的腐蚀性及其与UF4燃料反应生成UO2沉淀而造成安全隐患,需严格控制熔盐中的含氧类杂质离子含量.利用自行研制的熔盐减压蒸馏装置,研究了载体盐中主要含氧杂质离子(O2?、NO3?、SO42?、PO43?)在高温低压下的蒸发分离行为,以及温度、压力、熔盐起始氧含量等工艺参数对...  相似文献   

16.
高温熔盐泵是使用熔盐冷却剂热工回路的"心脏",为回路中的熔盐强迫循环提供动力。目前熔盐堆使用的高温熔盐泵采用悬臂式结构,其较长的液下主轴需要采用滑动轴承支撑。在轴承表面加工出具有一定尺寸和规则排列的几何形状,是改善轴承表面摩擦学特性提高承载能力一种有效手段。本文采用有限体积法对高温熔盐泵轴承进行研究,以光滑轴承作为对比项,分析了长条织构、圆形织构、正方形织构和十字形织构对轴承承载能力的影响,通过优化织构的形状、密度、深度等参数,得到长度8 mm、宽度3 mm、深度20μm的十字形织构,这种织构形式的轴承承压能力最好,可以为高温熔盐泵轴承设计提供有效的理论指导。  相似文献   

17.
高温熔盐在熔盐堆和太阳能储能等领域有广泛的应用前景,为研究熔盐堆乏燃料后处理的氟化挥发过程中熔盐的传热特性,本文基于三元硝酸盐与导热油的对流传热实验装置,对熔盐在层流区的传热特性进行了研究。根据实验数据对努塞尔数Nu计算关联式进行了评价,并在Sieder-Tate关联式基础上,利用实验数据进行拟合得到了新的计算关联式。通过Fluent6.3平台对新Nu关联式进行验算。与换热器内的温度场分布对比,发现新Nu计算关联式能较准确地预测熔盐在层流区的传热特性。  相似文献   

18.
与传统加速器驱动次临界系统(ADS)采用金属靶作为散裂中子靶的设计不同,加速器驱动次临界熔盐堆(AD-MSRs)采用靶堆一体的设计,直接使用燃料熔盐作为散裂中子靶。由于熔盐靶的中子学性能直接影响AD MSRs的能量放大系数、核废物的嬗变和核燃料增殖的效率,所以本研究基于MCNPX程序,详细计算了高能质子轰击氟盐和氯盐两种熔盐靶产生的散裂中子产额、散裂中子能谱、能量沉积分布以及散裂产物等中子学性能,并与液态Pb和铅铋共熔体(LBE)两种液态金属靶进行了对比。计算结果表明,熔盐靶在散裂中子产额上与液态金属靶有一定的差距,但熔盐靶内能量沉积分布的梯度较小,更有利于靶区的热量导出。与液态Pb和LBE靶相比,熔盐靶的散裂产物中包含更多的气体以及高质量数的α发射体核素。  相似文献   

19.
熔盐快堆增殖是当前国际上关注的热点,本文基于堆芯结构双流体方案,利用氟化或氯化熔盐中铀钚重金属盐高温下的高溶解度特性,获得熔盐快堆的高增殖。对铀钚燃料循环熔盐快堆的三种可行性熔盐燃料方案(LiF+PuF_4+UF_4、NaF+PuF_4+UF_4和NaCl+PuCl_3+UCl_3),采用基于反应堆安全分析和设计的综合性模拟程序SCALE(Standardized Computer Analyses for Licensing Evaluation),计算了中子能谱、反应性温度系数。分析了增殖比BR(Breeding Ratio)受反应堆裂变区、增殖区和中子反射层的尺寸影响,熔盐中~6Li和~(35)Cl同位素丰度对BR的影响,以及BR随运行时间动态变化。计算结果表明:氯盐方案(BR=1.46)与两种氟盐方案(BR≈1.06)相比较,具有更大的增殖能力优势。结合熔盐相图、BR随重金属摩尔浓度变化和BR最大值随熔盐平均工作温度变化曲线,可以在熔盐快堆设计中快速确定熔盐的工作温度、重金属摩尔浓度和反应堆增殖比。  相似文献   

20.
FLiNaK(LiF-NaF-KF)熔盐在高温熔盐堆或聚变堆的应用中面临着氚扩散渗透的问题。研究H2在FLiNaK熔盐中的渗透行为,能够为FLiNaK熔盐中氚的控制提供依据。氢同位素在熔盐中的扩散渗透特性测试系统主要用于测定熔盐中氢同位素的渗透行为,以获得氢同位素在熔盐中的扩散系数和溶解度常数等相关参数。通过该系统,本文对FLiNaK熔盐中H2的渗透、扩散和溶解等行为进行了研究。结果表明,受实验装置和实验方法的限制,H2在FLiNaK熔盐中的渗透主要以氢原子(或离子)的方式进行。在500-700°C时,FLiNaK熔盐中H2的扩散系数与温度的关系满足:DFLiNaK-H=1.12×10-4exp(-66.40×103/RgT)(m2·s-1),其扩散活化能为66.40kJ·mol-1。而对于FLiNaK熔盐中H2的溶解常数,其与温度的关系可表述为:KFLiNaK-H=2.1×10-5exp(-0.94×103/RgT)(mol·m-3·Pa-1/2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号