首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH值对U、Pu的吸附影响   总被引:1,自引:0,他引:1  
以西南某极低放废物处置库预选场址为研究对象,通过静态模拟实验研究水相pH值对U、Pu在土壤中的吸附影响,结合PHREEQC软件模拟了该地下水溶液中不同pH值下的种态和主要成分。结果表明,水相环境中土壤对U、Pu的吸附约在第13d达到吸附平衡。pH值对土壤吸附能力有较大影响,酸性溶液吸附能力较弱,碱性溶液吸附能力较强。U、Pu在水溶液中的化学种态和主要成分对土壤吸附有一定影响,带电荷的UO_2(CO_3)_2~(2-)、UO_2(CO_3)_3~(4-)和不带电的Pu(OH)_4易与土壤表面的≡Si—OH、Al—OH等表面羟基官能团形成新的络合物,使得土壤的吸附能力增强。  相似文献   

2.
以~(14)C标记[UO_2(CO_3)_3]~(-4)离子,加入到天然海水和蒸馏水中,进行水合氧化钛吸附性能的试验。实验表明在pH5~6条件下制备的水合氧化钛吸附剂,对[UO_2(CO_3)_3]~(-4)和UO_2~( )都具有显著的吸附能力。  相似文献   

3.
为研究铀矿区地下水化学性质对铀的存在形式的影响,本文以赣杭构造带某铀矿区地下水为研究对象,在对9个典型采样点地下水化学成分分析的基础上,采用数理统计软件SPSS 18.0和地球化学模拟软件PHREEQC及llnl.dat数据库,探究了研究区内地下水水化学特征及U的存在形式。结果表明:本研究区地下水水化学类型以HCO_(3)-Na与HCO_(3)-Na·Ca为主,U含量与Ca^(2+)和Mg^(2+)浓度体现出较强正相关性,与SO_(4)^(2-)的相关性次之;地下水中U元素主要以六价为主,几乎占100%,主要存在形式依次为UO_(2)(CO_(3))_(2)^(2-)、UO_(2)(CO_(3))_(3)^(4-)、UO_(2)CO_(3)、UO_(2)(OH)2、UO_(2)(OH)_(3)^(-)、UO_(2)OH^(+)等6种,其中UO_(2)(CO_(3))_(2)^(2-)占绝对优势,整体以碳酸铀酰形式为主,这也与研究区地下水酸碱性相对应。  相似文献   

4.
利用自主编写的地球化学计算软件CHEMSPEC分析了Am在北山地下水和我国西南某地下水中的种态分布,并计算了Am在这两种地下水中的溶解度,考察了pH、Eh、不同离子以及硅的存在等对种态分布的影响。结果表明,Am在这两种地下水中均以正三价存在,随pH值的不同Am的种态会发生较大的变化,在偏酸性条件下,主要以AmSO+4、Am(SO4)-2及Am3+的形式存在,在中性至弱碱性条件下,以AmCO+3的形式存在,强碱性条件下,则基本转化为Am(OH)3;当北山地下水中有Si存在时,在pH=6.5~9.7范围内,Am的主要种态为AmSiO(OH)2+3;不同离子的浓度变化对Am的种态分布会产生一定影响,其影响顺序为HCO-3F-SO2-4Cl-。pH和HCO-3对Am溶解度的影响较大,随着地下水pH的升高,Am的溶解度逐渐减小。Am在两种地下水中的溶解度分别为2.01×10-7 mol/L(北山地下水pH=7.56、Eh=164mV)、1.60×10-7 mol/L(西南地下水pH=7.50、Eh=0mV)。  相似文献   

5.
塔木素黏土岩是我国高放废物地质处置库黏土岩场址的候选围岩之一.以内蒙古塔木素地区Tzk1钻孔542m深(Tzk1-542)和Tzk2钻孔516m深(Tzk2-516)黏土岩岩芯样品为研究对象,采用浸泡平衡法合成了pH分别为945和824的地下水并分析了其组分.Tzk1-542和Tzk2-516岩芯样品的Fe^(2+)和总Fe质量比分别为7836%和9192%,据此计算得到其氧化还原电势(Eh)分别为-1694mV和115mV.利用PHREEQC程序、OECD/NEA最新热力学数据及碳酸铀酰与Mg/Ca配合物的热力学参数,计算了U、79Se、99Tc和Np在合成地下水中的溶解度及种态分布情况.结果表明,在假设地下水氧气分压不变、pH为50~110的条件下,U、Se、Tc、Np在Tzk1-542合成地下水中的溶解度范围分别为10^(-11)~10^(-8)、10^(-16)~10^(-9)、10^(-14)~10^(-12)、10^(-18)~10^(-17)mol/L,在Tzk2-516合成地下水中的溶解度范围分别为10-14~10^(-5)、10^(-14)~10^(-5)、10^(-11)~10^(-4)、10^(-18)~10^(-17)mol/L,两组合成地下水中U、Se、Tc和Np的溶解态均主要以中性分子或阴离子形式存在.鉴于黏土岩地下水一般呈碱性,固定Tzk1-542和Tzk2-516合成地下水的pH分别为945和824,Eh在-1694~1694mV范围变化时,Tzk1-542合成地下水中U、Se、Tc、Np的溶解度范围分别为10^(-10)~228×10^(-4)、10^(-12)~10^(-3)、10^(-14)~10^(-2)、10^(-18)~10^(-12)mol/L,其溶解态主要以UO_(2)(CO_(3))_(4)^(-3)、CaUO_(2)(CO_(3))_(2)-3、SeO_(2)^(-3)、HSeO-_(3)、TcO-_(4)、NpO_(2)OH等带负电或中性种态的形式存在;Tzk2-516合成地下水中U、Se、Tc、Np的溶解度范围分别为10^(-11)~10^(-5)、10^(-11)~10^(-3)、10^(-16)~10^(-2)、10-19~10^(-13)mol/L,其溶解态主要以Ca_(2)UO_(2)(CO_(3))_(3)、CaUO_(2)(CO_(3))_(3)^(2-)、SeO^(2-)_(3)、HSeO-_(3)、TcO-_(4)、NpO_(2)OH等形式存在.本工作仅对均相溶液体系进行模拟,针对地下水-岩体系的实际情况,仍需进一步开展相关核素的实验研究.  相似文献   

6.
以高岭土为研究对象,采用静态吸附的实验方法,探讨了吸附时间、铀(Ⅵ)的初始浓度、吸附剂质量、pH值、离子种类、腐殖酸质量等因素对铀(Ⅵ)吸附的影响。结果表明:高岭土对铀(Ⅵ)的吸附性能较好,在6 h时就达到了平衡,最佳铀(Ⅵ)的初始浓度为60μg?m L~(-1);最佳的吸附剂质量为0.01 g;随着pH值的增大,高岭土对铀(Ⅵ)的吸附效果先增大,后减小,pH=5时,吸附效果最大;溶液中K~+、NO_3~-、Na~+和SO_4~(2-)对铀(Ⅵ)的吸附影响较小,Mg~(2+)、CO_3~(2-)和HCO_3~-对铀(Ⅵ)的吸附有抑制效果,不利于吸附;溶液中腐殖酸质量的增加会抑制高岭土对铀(Ⅵ)的吸附。实验结果同时表明:准二级动力学模型较准一级动力学模型能更好地描述U(Ⅵ)在高岭土上的吸附。  相似文献   

7.
本文采用与铀酰离子吸收光谱匹配较好的Ga灯为光化学光源,对UO_2(NO_3)_2-HCOOH,UO_2(NO_3)_2-HCOOH-HCOONa体系光化反应进行了研究,确定了光化反应的反应物和生成物之间的化学计量关系。气相色谱分析结果表明,CO_2与CO的比值约为15:1。在U(Ⅵ)光化学还原过程中,消耗1mol甲酸,则生成1mol四价铀和1mol气体(CO_2+CO),据此推断UO_2~(2+)-HCOOH体系主要的光化学反应方程式为: UO_2~(2+)+HCOO~-+3H~+→U~(4+)+CO_2+2H_2O还研究了各种条件对体系光化学反应的影响。  相似文献   

8.
在热液条件下利用热动力数据对晶质铀矿(UO_2)的溶解度进行了定量评估。其结果表明,铀酰碳酸盐络合物,如UO_2CO_3~0、UO_2(CO_3)_2~(2-)和UO_2(CO_3)_3~(4-),多存在于比较氧化的和弱酸、弱碱条件下,而铀酰氯化络合物,UO_ 2Cl~+多存在于酸性条件下。这些特点可在温度达200℃,CO_2压力(PCO_2)和盐度均适合的范围内显示出来。因此,物理化学参数,如氧活度(CaO_2)和pH可以被认为是控制晶质铀矿溶解度的  相似文献   

9.
本文提出萃取光度法研究乙酸正丁酯萃取铀(Ⅵ)—Br—PADAP螯合物,确定苯合物有:UO_2R_2、UO_2ROH、UO_2RSCN(R代表Br—PADAP),并测定了UO_2ROH、UO_2RSCN两螯合物的萃取常数和UO_2~(2+)羟基络合物UO_2(OH)~+、UO_2(OH)_2的稳定常数β_1、β_2,指出SCN~-可以进入UO_2—Br—PADAP螯合物内界形成三元萃合物。  相似文献   

10.
为了探究磷酸三钙对U(Ⅵ)的吸附性能与机理,以碳酸钙和磷酸氢二铵为原料,采用固相法合成磷酸三钙粉末,并利用X射线衍射仪(XRD)、傅里叶转换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对其理化特性进行表征。研究pH、固液比、吸附时间、U(Ⅵ)初始浓度、吸附温度等因素对磷酸三钙去除U(Ⅵ)性能的影响。采用动力学吸附、等温吸附、热力学吸附等模型及XRD、FTIR、X射线光电子能谱(XPS)、SEM、能谱仪(EDS)、电感耦合等离子体发射光谱仪(ICP-OES)等表征手段揭示磷酸三钙去除U(Ⅵ)的机理。结果表明:在pH=3.0、固液比0.1 g/L、吸附时间60 min、U(Ⅵ)初始质量浓度120 mg/L、吸附温度308 K的条件下,磷酸三钙对U(Ⅵ)的平衡吸附容量达到999.25 mg/g。该吸附过程符合准二级动力学模型(化学吸附)和Langmuir模型(单层吸附),且为自发吸热过程。磷酸三钙对U(Ⅵ)的去除机理为溶解和沉淀过程:在酸性水溶液中,磷酸三钙溶解出的Ca^(2+)和PO^(3-)_(4)与UO_(2)^(2+)发生沉淀反应,在磷酸三钙表面生成准钙铀云母(Ca(UO_(2))_(2)(PO_(4))_(2)·6H 2O)。以上结果表明:磷酸三钙可作为一种有应用前景的用于处理含U(Ⅵ)废水的吸附材料。  相似文献   

11.
前言在各种类型矿床的找矿方法中,水文地球化学法具有良好的效果。水文地球化学法十分适用于铀矿床普查,这是由于铀在六价状态下既能以铀酰离子UO_2~(2+)的形式溶于酸性溶液,也能以重碳酸盐UO_2(CO_3)_2~(2-)或三碳酸盐UO_2(CO_3)_3~(4-)等络合离子的形式溶于中性和碱性溶  相似文献   

12.
以高岭土为吸附剂,研究高岭土对水中U(Ⅵ)的吸附特征,对比探究了298.15 K、308.15 K、318.15 K和328.15 K下U(Ⅵ)的不同初始浓度、溶液pH和共存离子对其吸附的影响。吸附实验结果表明:随着U(Ⅵ)初始浓度增加,高岭土对U(Ⅵ)的吸附量增强,吸附热力学分析证明高岭土对U(Ⅵ)的吸附过程是自发的吸热过程,升温对高岭土吸附U(Ⅵ)产生促进作用;当pH为7时,高岭土对U(Ⅵ)的吸附效果最佳,相同pH条件下升温对高岭土吸附U(Ⅵ)产生促进作用;共存离子中Ca~(2+)、CO_3~(2-)和SO_4~(2-)对吸附有较大的抑制作用,相同离子条件下升温对高岭土吸附U(Ⅵ)产生促进作用;通过对不同温度条件下高岭土吸附前后的红外吸收光谱(Fourier Transform Infrared Spectrometer,FT-IR)对比发现:温度升高后吸收峰发生了移动和强度变化,并且有新峰出现,说明升温后高岭土对U(Ⅵ)的吸附不仅是物理吸附,还存在化学吸附。  相似文献   

13.
本文用红外光谱研究了季铵树脂吸附的硫酸铀酰络合物。树脂吸附UO_2(SO_4)_2~(2-)时,UO_2~(2+)的γ_3峰值为918cm~(-1),吸附UO_β(SO_4)_3~(4-)时,该峰值为910cm~(-1)。树脂在组成接近铀水冶条件的吸附液中吸附平衡后,吸附n值为2.5—2.7的UO_2(SO_4)_n~(2-2n),其UO_2~(2+)的γ_3峰与树脂的季铵峰合并于900cm~(-1);该树脂在KBr压片中会发生转换反应,使硫酸铀酰络离子转成UO_2(SO_4)_2~(2-)和SO_4~(2-)。还利用红外光谱定量测定反应终了的自由硫酸根量,在化学当量法求得的树脂吸附铀量及SO_4~(2-)量基础上,计算了n值。  相似文献   

14.
氧化还原电势(Eh)是影响高放废物处置库长期安全性能的重要参数之一。然而,直接测定地下水的Eh值面临较多不确定性因素。北山花岗岩中存在一定量的含铁矿物,由此可能控制地下水中铁的含量。本工作基于北山三号井400m深处的地下水,水中铁质量浓度为0.033mg/L及钻孔岩芯中Fe~(2+)/Fe_(tot)的比值为96.86%条件下,提出了一个推测北山地下水氧化还原电势的可能方法,计算得到北山三号井地下水的Eh=83.2mV。该值与利用针铁矿的沉淀饱和指数估算得到的101.8 mV相接近,但需进一步开展现场的Eh测量工作来验证及比对。依据此Eh,利用PHREEQC程序及OECD/NEA发布的最新热力学数据,并加入MUO_2(CO_3)_3~(2-)和M_2UO_2(CO_3)_3~0(M=Ca、Mg、Sr)的稳定常数,计算了可变价核素U、~(99)Tc、~(79)Se和Np在北山地下水中的形态分布和溶解度。结果表明,U和Tc的溶解度相对较高(约10~(-5)~10~(-4) mol/L),Se的溶解度相对较低(约10~(-8) mol/L),Np的溶解度则极低(约10~(-18) mol/L);此外,溶解态的U、Tc和Se主要以阴离子形式存在,具有较强的迁移性。另一方面,北山花岗岩富含二价铁离子,因此需进一步开展其对可变价核素还原沉淀作用的实验研究,以综合评价处置场的安全性能。  相似文献   

15.
为了解铀酰离子在北山地下水中的吸附、扩散和迁移行为,利用地球化学计算软件PHREEQC,采用由OECD/NEA发布的最新铀的热力学数据,计算了铀在我国高放废物地质处置库重点研究区甘肃北山地下水中的种态分布,并分析了围岩中存在的方解石对铀溶解度的影响。计算结果表明,在北山地下水组成不变的前提下,在偏酸性条件下,铀主要以UO2F+、UO2SO4、UO22+、UO2F2和UO2(SO4)22-的形式存在,而在中性至弱碱性条件下,主要以 UO2(CO3)4-3、UO2(CO3)22-、UO2(OH)3-和UO2(OH)42-的形式存在。我国计划建造的高放废物处置库的设计深度为地下500~1000m,其水岩体系一般呈弱碱性。在这样的弱碱性水岩体系中,以阴离子形式存在的铀酰配合物具有较强的可移动性。当地下水的pH=7.56时,在Eh<24mV的条件下,铀主要以沥青铀矿的形式存在,而在更高的Eh条件下,则主要以UO22+与CO32-和OH-形成的阴离子配合物的形式存在。当地下水与空气接触时,O2的存在会使Eh升高,此时铀的主要存在种态为UO22+及其各种配合物。当围岩体系中存在方解石时,在pH<8.0的条件下,铀在地下水中的溶解度会显著提高,而在更高pH条件下,方解石对铀的溶解度无明显影响。  相似文献   

16.
以阿拉善粘土岩胶体为吸附介质,采用静态吸附的方法,探讨了不同铀初始浓度、pH、离子种类对粘土岩胶体吸附U(Ⅵ)行为的影响。实验结果表明:U(Ⅵ)的初始浓度为3μg·mL~(-1)时,达到最佳吸附效果;吸附分配系数随pH的增加呈现先增加后降低的趋势,且在pH=8时达到最佳吸附效果;阴、阳离子对U(Ⅵ)在粘土岩胶体中的吸附有一定的抑制作用,其中Ca~(2+)、HCO_3~-、CO_3~(2-)抑制作用较强。U(Ⅵ)在粘土岩胶体中的吸附等温线符合Freundlich等温方程;吸附前后红外光谱表明,与吸附相关的主要基团为羟基。  相似文献   

17.
作者与读者     
《原子能科学技术》编辑部: 见到贵刊1979年第5期上刊登的“自锆英砂合成无机离子交换剂(Ⅰ)无定形粒状磷酸锆(ZrP)的合成及性质”,阅后感到有些地方还有一些问题需请教,试举几处: 1.铀的分配系数测定。是否应考虑铀的水解呢?文中测定不同pH条件下一些金属离子的分配系数,铀已做到pH~8.8的条件下,这样是否合适?从文中看,金属离子浓度为25毫克/升,对UO_2~(2 )来说,这大致为1×10~(-4)M,在这种浓度下,UO_2~(2 )是很容易水解以致生成沉淀的,因为水解产物UO_2(OH)_2  相似文献   

18.
在温变为100—300℃,压力(P_(H2))为50MPa,pH的计算值为1-10的条件下测量了UO_2在HCl、NaOH或LiOH水溶液中的溶解度。氟化物的污染对pH值为2—4的测量结果没有影响.在pH值约为3时观测到的溶解度的最大值可能是可靠的。在pH<2、t≤200℃时,在总实验误差范围内。溶解度与Nikolaeva和Pirozhkov(1978)及Bruno等(1986)的测量结果是一致的,并且与Wolery(1983)为非晶质阳晶质UO_2选择的溶解度完全相符。溶解度与pH的相关性说明溶液中以UOH~(3+)为主。在碱性介质中,在各种温度下UO_2的溶解度明显低于以前所作的各种测量和估算结果,这说明U(OH)_5~-络合物极不稳定或不存在.它在pH<10时对其溶解度影响不大。在近临界温度和中性pH值范围内.以前还没有发表过UO_2溶解度的测量结果,现有的水合络合物U(OH)_n~(4-n)(n=2、3、4)的热力学资料都是估算的。当pH=4—8时,所测量的溶解度比根据推测的热力学资料所计算的结果在温度超过200℃时低达3个数量级,而在较低温时比预测的要高达2个数量级。当pH>4时,实验结果表明温度和pH的相关性没有统计学上的意义。这说明溶液中以U(OH)_4(aq)为主,其溶解反应: UO_2+2H_2O=U(OH)_4(aq)当温度为100—300℃时,该反应: lag(K_(s,4)=-9.47±0.3  相似文献   

19.
以高庙子膨润土为研究对象,通过静态吸附实验,考查了高庙子膨润土对U(Ⅵ)的吸附特征,研究了接触时间、固液比、铀的初始浓度、pH、离子类型和离子浓度等因素对U(Ⅵ)吸附特征的影响,并讨论了膨润土对U(Ⅵ)的吸附动力学和热力学过程。结果表明:吸附过程在24 h后达到动态平衡;最佳吸附固液比为1:300;最佳吸附初始浓度为40 mg·L~(-1);在pH为5时,膨润土对U(Ⅵ)的吸附效果最好,过酸或过碱都会影响膨润土对U(Ⅵ)的吸附;溶液中Ca~(2+)、CO_3~(2-)显著降低了膨润土对U(Ⅵ)的吸附效果,影响程度随着离子浓度的增加而增大;Freundlich等温吸附模型和准二级动力学模型对吸附过程的拟合效果较好,主要表现为多层吸附。  相似文献   

20.
本文采用化学当量法研究了季铵树脂在组成接近铀水冶条件的硫酸铀酰-硫酸钠溶液中的吸附平衡。在实验范围内,[RHSO_4]/[R_2SO_4]摩尔比值取决于溶液的氢离子浓度及离子强度,而与树脂是否还吸附其它阴离子无关。当溶液的离子强度为0.1~0.5、pH为1.5~1.9、U(Ⅵ)浓度为0.5~2.0×10~(-3)mol/L范围内变化时,树脂吸附的UO_2(SO_4)_n~(2-2n)的n值为2.5~2.7,铀占树脂总容量的30~50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号