首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bradykinin receptors are present on vascular smooth muscle cells; however, the regulation and biological function of these receptors is unclear. To address these questions the interaction between growth factors and kinins in cultured arterial smooth muscle cells has been examined. Based upon the data a hypothesis is presented that platelet-derived growth factor (PDGF) upregulates cell surface bradykinin B2 receptors on arterial smooth muscle cells. The biological effect of the increase in B2 receptors is currently unclear but under certain conditions they may enhance mitogenesis. These mitogenic effects however, are strongly opposed by the effects of bradykinin acting via a B1-type of receptor which mediates potent inhibition of growth factor-induced mitogenesis.  相似文献   

3.
Correlative studies have indicated that hyperinsulinemia is present in many individuals with atherosclerosis. Insulin resistance has also been linked to cardiovascular disease. It has proved to be difficult to decipher whether hyperinsulinemia or insulin resistance plays the most important role in the pathogenesis of atherosclerosis and coronary artery disease. In this study, we demonstrate that insulin increases the amount of farnesylated p21Ras in vascular smooth muscle cells (VSMC), thereby augmenting the pool of cellular Ras available for activation by platelet-derived growth factor (PDGF). In VSMC incubated with insulin for 24 h, PDGF's influence on GTP-loading of Ras was significantly increased. Furthermore, in cells preincubated with insulin, PDGF increased thymidine incorporation by 96% as compared with a 44% increase in control cells (a 2-fold increment). Similarly, preincubation of VSMC with insulin increased the ability of PDGF to stimulate gene expression of vascular endothelial growth factor 5- to 8-fold. The potentiating influence of insulin on PDGF action was abrogated in the presence of a farnesyltransferase inhibitor. Thus, the detrimental influence of hyperinsulinemia on the arterial wall may be related to the ability of insulin to augment farnesyltransferase activity and provide greater amounts of farnesylated p21Ras for stimulation by various growth promoting agents.  相似文献   

4.
5.
6.
7.
The role of the endothelium in modulating smooth muscle cell growth is unclear. alpha 1 adrenergic receptors activate proto-oncogene expression in smooth muscle. We have now found in rat aorta that carbachol, a muscarinic cholinergic agonist that promotes release of nitric oxide (NO), inhibits expression of c-fos and c-jun mRNA induced by alpha 1 receptors. NO synthase inhibitors blocked the effects of carbachol on c-fos mRNA and a cGMP analog mimicked carbachol. After balloon injury in rat aorta using in situ hybridization, the catecholamine-induced increase in c-fos mRNA expression in the medial layer was inhibited by the alpha 1 receptor antagonists, prazosin and chloroethylclonidine. In the neointima, this response was fully blocked by prazosin; however, chloroethylclonidine only partially inhibited it. These results suggest that NO, acting through a cGMP-dependent mechanism, inhibits expression of the c-fos and c-jun genes in arteries, which may contribute to the growth-inhibiting effects of the endothelium. After endothelial damage, the activation of c-fos in neointima by adrenergic stimulation may involve a subtype of alpha 1 receptor different from that utilized in medial smooth muscle.  相似文献   

8.
BACKGROUND: Although bradykinin is thought to contribute to the effects of ACE inhibitors on the cardiovascular system, its precise role remains to be elucidated. Evidence suggests that bradykinin might be important in the upregulation of beta-adrenergic receptors (beta-ARs) induced by ACE inhibitors, and the role of bradykinin in this effect has now been investigated with cultured neonatal rat cardiac myocytes. METHODS AND RESULTS: The density of beta-ARs on the myocyte surface was determined with a binding assay with [3H]CGP-12177. Incubation of cultured myocytes for 24 hours with the ACE inhibitor captopril (1 micromol/L) increased beta-AR density by 35% and enhanced the response of cells to isoproterenol but not to forskolin. Neither an angiotensin-II type 1 (AT1) receptor antagonist, CV-11974, nor angiotensin-I affected beta-AR density. However, the bradykinin B2 receptor antagonist Hoe 140 abolished the effect of captopril on beta-AR upregulation in a dose-dependent manner. The protein kinase C inhibitor staurosporine (20 nmol/L) but neither indomethacin nor L-NAME also inhibited captopril-induced upregulation of beta-ARs. Exogenous bradykinin increased the spontaneous beating frequency of cultured myocytes and Hoe 140 abolished this effect. Bradykinin level in the medium increased 1.4-fold by the treatment of cultured myocytes with captopril for 24 hours. CONCLUSIONS: The results suggest that captopril enhances beta-AR responsiveness by inducing beta-AR upregulation and that the latter effect is mediated by activation of bradykinin B2 receptors and protein kinase C. These observations also offer insight into the different roles of ACE inhibitors and AT1 receptor antagonists in the treatment of heart failure.  相似文献   

9.
10.
GRK5, a recently cloned member of the G protein-coupled receptor kinase family, has been shown to phosphorylate and participate in the desensitization of angiotensin II (Ang II) type 1A (AT1A) receptors. In this study, the effect of angiotensin II on GRK5 expression was examined in cultured vascular smooth muscle cells and aortas of Ang II-infused hypertensive rats. In vascular smooth muscle cells, Ang II (100 nM) up-regulated GRK5 mRNA as early as 1 h, with a peak at 16 h. This up-regulation was dose- and calcium-dependent. The increase in GRK5 mRNA was reflected in a smaller increase in protein expression, which nonetheless had functional significance since AT1 receptor phosphorylation was increased and phospholipase C activation was decreased following prolonged incubation with Ang II. In aortas of Ang II-infused hypertensive rats, both GRK5 mRNA and protein levels increased approximately 3-fold compared with sham-operated rats at 5 and 7 days, respectively. This up-regulation was blocked either by losartan or by the nonspecific vasodilator hydralazine. Since a subpressor dose of Ang II did not increase GRK5 mRNA levels and norepinephrine infusion also increased GRK5 mRNA expression, we conclude that Ang II-induced GRK5 up-regulation in rat aortas may be due to hypertension per se. Hormone- and hemodynamic stress-induced GRK5 regulation may provide a novel molecular basis for long-term regulation of agonist sensitivity of vascular cells.  相似文献   

11.
PURPOSE: Increases in cytosolic calcium levels trigger smooth muscle contraction while nuclear calcium increases are thought to regulate gene expression. Endothelin-1 (ET-1) affects both. The goal of these studies was to further investigate the importance of ET-1 to corporal physiology by examining its actions on proliferation and immediate early gene (IEG) expression in cultured human corporal smooth muscle cells. MATERIALS & METHODS: Early passage (1-3) smooth muscle cells were grown in culture and exposed to either phenylephrine (PE) or ET-1 in the absence and presence of serum, the ET(A) or ET(B) selective antagonist BQ123 or IRL1038, or the L-type Ca2+ channel blocker, verapamil. Cell proliferation was assessed with a hemocytometer. The effects of ET-1 on c-myc and c-fos were evaluated using Northern blot analysis. Parametric or nonparametric statistics were used as appropriate. RESULTS: Addition of ET-1 (100 nM) to serum-starved cultured corporal smooth muscle cells was associated with a nearly 2-fold increase in cell number, as well as 2 to 6-fold increases in c-myc and c-fos levels. Cellular proliferation was inhibited by ET(A)- or ET(B)-receptor subtype blockade with BQ123 (1 microM) or IRL1038 (1 microM), respectively, or blockade of Ca2+ channels with verapamil (10 microM). PE (3 microM) had no detectable effect on smooth muscle proliferation. CONCLUSIONS: Cell proliferation was mediated by activation of the ET(A) and ET(B) receptor subtypes, dependent on transmembrane Ca2+ flux, and correlated with significant increases in c-myc and c-fos mRNA levels. These studies extend previous observations to indicate the potential pleotropic actions of this peptide in the regulation of human corporal smooth muscle physiology in vivo.  相似文献   

12.
Control of the balance between receptor activation and inactivation is a prerequisite for seven transmembrane domain (7TM) receptor function. We asked for a mechanism to stabilize the inactive receptor conformation which prevents agonist-independent receptor activation. Na+ ions have reciprocal effects on agonist versus antagonist interaction with various 7TM receptors. To investigate the Na+ dependence of receptor activation we chose the bradykinin B2 receptor as a prototypic 7TM receptor. Decrease of the intracellular Na+ content from 40 mM to 10 mM of COS-1 cells transiently expressing rat B2 receptors activated the B2 receptor in the absence of agonist as shown by a 3-fold increase in the basal release of inositolphosphates and increased the intrinsic activity of bradykinin to 1.2. In contrast, under increased intracellular Na+ (148 mM) the intrinsic activity of bradykinin decreased to 0.72. When the interaction of Na+ with the B2 receptor was prevented by exchanging a conserved aspartate in transmembrane domain II for asparagine the B2 receptor was also constitutively-activated in the absence of agonist. Agonist-independence B2 receptor activation under decreased intracellular Na+ was similarly observed with primary human fibroblasts endogenously expressing human B2 receptors by a 2.5-fold increase in basal inositolphosphates. Activation of human B2 receptors in the absence of agonist under decreased intracellular Na+ was further evident by an increased basal phosphorylation of the B2 receptor protein. Thus our data suggest that the interaction of Na+ ions with the B2 receptor stabilizes or induces an inactive receptor conformation thereby providing a mechanism to suppress agonist-independent receptor activation in vivo.  相似文献   

13.
The bradykinin-induced rise in intracellular Ca2+ concentration ([Ca2+]i) and the bradykinin receptor involved in this response were characterized in bovine pulmonary artery endothelial cells. It was found that bradykinin induces an intracellular biphasic Ca2+ response, consisting of a transient peak followed by an elevated plateau phase. Both bradykinin and the bradykinin B1 receptor agonist, des-Arg9-bradykinin, induced a concentration-dependent increase in [Ca2+]i, but the bradykinin-induced rise was much greater. Moreover, the bradykinin-induced [Ca2+]i rise could be inhibited by the bradykinin B2 receptor antagonists, D-Arg0[Hyp3, Thi(5,8), D-Phe7]bradykinin and Hoe 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]bradykinin), but not by the bradykinin B1 receptor antagonist, des-Arg9-[Leu8]bradykinin. From these results it can be concluded that a bradykinin B2 receptor is involved in this response. Furthermore, we found that the tachykinin NK1 receptor antagonist, RP67580 ([imino 1 (methoxy-2-phenyl)-2 ethyl]-2 diphenyl 7,7 perhydroisoindolone-4 (3aR, 7aR)), and its negative enantiomer, RP68651 (2-[1-imino 2-(2 methoxy phenyl) ethyl] 7,7 diphenyl 4-perhydroisoindolone (3aS-7aS)), could inhibit the bradykinin-induced [Ca2+]i response, although no functional tachykinin NK1 receptors were found. Binding studies evidenced no binding of RP67580 or RP68651 to the bradykinin receptor. We conclude that RP67580 inhibits the bradykinin-induced rise in [Ca2+]i via a bradykinin B2 receptor-independent mechanism.  相似文献   

14.
OBJECTIVES: The aims of this study were to determine (1) whether neonatal rat cardiac fibroblasts (CAFB) express P2Y receptors; (2) whether CAFB respond to extracellular ATP by inducing expression of c-fos mRNA; and (3) whether extracellular ATP modulates norepinephrine (NE)-stimulated cell growth in CAFB. METHODS: Expression of P2Y1 and P2Y2 receptors and induction of c-fos were examined by Northern blot analysis. CAFB growth was assessed by measuring [3H]thymidine incorporation and DNA content. P2Y receptor pharmacology was studied using various ATP analogues. RESULTS: Northern blot analysis of polyA enriched RNA confirmed that at least 2 subtypes of P2Y receptors (P2Y1 and P2Y2) are expressed in cultured CAFB. Extracellular ATP induced the expression of c-fos mRNA through a pathway that was sensitive to inhibitors of protein kinase C (PKC), but not to inhibitors of intracellular Ca2+ signaling. Extracellular ATP inhibited the NE-stimulated increases in DNA content and in [3H]thymidine incorporation into DNA. Whereas the potency order for stimulation of c-fos expression was ATP = UTP > ADP > adenosine, the potency order to inhibit the NE-induced increase of [3H]thymidine incorporation into DNA was ATP > ADP > UTP > adenosine. CONCLUSIONS: These data demonstrate that CAFB express both P2Y1 and P2Y2 receptor mRNA and that CAFB respond to P2Y receptor stimulation by induction of c-fos and inhibition of DNA synthesis. These findings suggest that the effects of ATP on [3H]thymidine incorporation into DNA and on expression of c-fos mRNA are exerted via distinct P2Y receptor subtypes.  相似文献   

15.
In the present study, the effect of bradykinin on basal and precontracted mouse-isolated trachea was investigated. In basal conditions mouse-isolated tracheal rings do not respond to bradykinin. However, when the tracheal rings were precontracted with carbachol (10(-7) M) a relaxation with bradykinin (3 x 10(-9)-3 x 10(-7)) was found. The maximal response amounted 69.7+/-4.1% (n=15) with a pD2 value of 7.2+/-0.21. The selective bradykinin B2 receptor antagonist HOE 140 (10(-10)-10(-8) M) antagonized the bradykinin-induced relaxation, while the bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) had no influence. The selective bradykinin B1 receptor agonist des-Arg9-bradykinin (10(-6) M) caused a small relaxation (8.4+/-2.5%, n=6), which could be antagonized completely by the selective bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) while addition of the selective bradykinin B2 receptor antagonist HOE 140 (10(-8) M) was without effect. In the presence of indomethacin (10(-6) M) the relaxation of bradykinin was completely abolished. Pretreatment of the tracheal rings with capsaicin, or the presence of the selective NK1 receptor antagonist RP 67851 (10(-6) M) or the presence of the nitric oxide synthase inhibitor L-NAME (3 x 10(-4) M) had no effect on the bradykinin-induced relaxation. In conclusion, these results demonstrate that the mouse-isolated tracheal is a preparation in which bradykinin exerts a relaxant response via stimulation of bradykinin B2 receptors. This response is probably mediated by prostaglandins.  相似文献   

16.
Previously we cloned a novel adaptor protein, APS (adaptor molecules containing PH and SH2 domains) which was tyrosine phosphorylated in response to c-kit or B cell receptor stimulation. Here we report that APS was expressed in some human osteosarcoma cell lines, markedly so in SaOS-2 cells, and was tyrosine-phosphorylated in response to several growth factors, including platelet derived growth factor (PDGF), insulin-like growth factor (IGF), and granulocyte-macrophage colony stimulating factor (GM-CSF). Ectopic expression of the wild type APS, but not C-terminal truncated APS, in NIH3T3 fibroblasts suppressed PDGF-induced MAP kinase (Erk2) activation, c-fos and c-myc induction as well as cell proliferation. In vitro binding experiments suggest that APS bound to the beta type PDGF receptor, mainly via phosphotyrosine 1021 (pY1021). Indeed, tyrosine phosphorylation of PLC-gamma, which has been demonstrated to bind to pY1021, but not that of PI3 kinase and associated proteins, was reduced in APS transformants. PDGF induced phosphorylation of the tyrosine residue of APS close to the C-terminal end. In vitro and in vivo binding experiments indicate that the tyrosine phosphorylated C-terminal region of APS bound to c-Cbl, which has been shown to be a negative regulator of tyrosine kinases. Since coexpression of c-Cbl with wild type APS, but not C-terminal truncated APS, synergistically inhibited PDGF-induced c-fos promoter activation, c-Cbl could be a mechanism of inhibitory action of APS on PDGF receptor signaling.  相似文献   

17.
18.
Growth factor receptor tyrosine kinase (RTK)-activated signaling pathways are well established regulators of neuronal growth and development, but whether these signals provide mechanisms for acute modulation of neuronal activity is just beginning to be addressed. We show in pheochromocytoma (PC12) cells that acute application of ligands for both endogenous RTKs [trkA, basic FGF (bFGF) receptor, and epidermal growth factor (EGF) receptor] and ectopically expressed platelet-derived growth factor (PDGF) receptors rapidly inhibits whole-cell sodium channel currents, coincident with a hyperpolarizing shift in the voltage dependence of inactivation. Sodium channel inhibition by trkA and PDGF receptors is mutually occlusive, suggestive of a common signal transduction mechanism. Furthermore, specific inhibitors for trkA and PDGF RTK activities abrogate sodium channel inhibition in response to NGF and PDGF, respectively, showing that the intrinsic RTK activity of these receptors is necessary for sodium channel inhibition. Use of PDGF receptor mutants deficient for specific signaling activities demonstrated that this inhibition is dependent on RTK interaction with Src but not with other RTK-associated signaling molecules. Inhibition was also compromised in cells expressing dominant-negative Ras. These results suggest a possible mechanism for acute physiological actions of RTKs, and they indicate regulatory functions for Ras and Src that may complement the roles of these signaling proteins in long-term neuronal regulation.  相似文献   

19.
To determine if muscarinic receptor-activation plays a role in oligodendrocyte development, the effect of carbachol a stable acetylcholine analog, on gene expression and proliferation was investigated. Using Northern blot analysis we showed that carbachol caused a time and concentration-dependent increase in c-fos mRNA. This effect was blocked by atropine, a non-selective muscarinic antagonist. In addition, the muscarinic-stimulated c-fos increase was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinase C (PKC), but not by N-2-(p-bromocinnamylamino)-ethyl-5-isoquinoline-sulfonamide (H-89), a potent inhibitor of protein kinase A, suggesting the involvement of PKC in mediating the response. Down-regulation of PKC by overnight pre-treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) blocked only the phorbol ester-stimulated c-fos accumulation while no effect was observed in the carbachol-induced response. These results suggested that carbachol stimulated an H-7 sensitive PKC pathway which may be different than that activated by TPA. Further evidence for two separate mechanisms of proto-oncogene induction was provided by the additive effect of carbachol and TPA. Induction of c-fos mRNA by carbachol was dependent on both influx of extracellular Ca2+ and release from intracellular stores, as both EDTA and BAPTA blocked the response. Since activation of muscarinic receptors can affect cell division in other cellular systems, the effect of carbachol on [3H]thymidine and bromodeoxyuridine incorporation into oligodendrocyte DNA was measured. Carbachol stimulated DNA synthesis in oligodendrocyte progenitors. This effect was mediated by muscarinic receptors as [3H]thymidine incorporation was prevented or significantly reduced by the addition of atropine. In conclusion, the present findings suggest that, the neurotransmitter, acetylcholine may act as a trophic factor in developing oligodendrocytes, regulating their growth and development in the central nervous system.  相似文献   

20.
Transgenic mice which overexpress kinase-deficient human insulin receptors in muscle were used to study the relationship between insulin receptor tyrosine kinase and the in vivo activation of several downstream signaling pathways. Intravenous insulin stimulated insulin receptor tyrosine kinase activity by 7-fold in control muscle versus < or = 1.5-fold in muscle from transgenic mice. Similarly, insulin failed to stimulate tyrosyl phosphorylation of receptor beta-subunits or insulin receptor substrate 1 (IRS-1) in transgenic muscle. Insulin substantially stimulated IRS-1-associated phosphatidylinositol (PI) 3-kinase in control versus absent stimulation in transgenic muscles. In contrast, insulin-like growth factor 1 modestly stimulated PI 3-kinase in both control and transgenic muscle. The effects of insulin to stimulate p42 mitogen-activated protein kinase and c-fos mRNA expression were also markedly impaired in transgenic muscle. Specific immunoprecipitation of human receptors followed by measurement of residual insulin receptors suggested the presence of hybrid mouse-human heterodimers. In contrast, negligible hybrid formation involving insulin-like growth factor 1 receptors was evident. We conclude that (i) transgenic expression of kinase-defective insulin receptors exerts dominant-negative effects at the level of receptor auto-phosphorylation and kinase activation; (ii) insulin receptor tyrosine kinase activity is required for in vivo insulin-stimulated IRS-1 phosphorylation, IRS-1-associated PI 3-kinase activation, phosphorylation of mitogen-activated protein kinase, and c-fos gene induction in skeletal muscle; (iii) hybrid receptor formation is likely to contribute to the in vivo dominant-negative effects of kinase-defective receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号