首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
聚醚砜/环氧树脂复合体系的研究   总被引:21,自引:0,他引:21  
研究了聚醚砜(PES)/环氧树脂复合体系的微面结构和热-力学性能,分析了PES在环氧树脂基体中的增韧机理,PES/环氧树脂复合体系为两相结构,分散相PES呈不规则的变形颗粒分散在环氧树脂中,加入一定量PES可较大幅度地提高环氧树脂的韧性,而不降低环氧树脂的模量和耐热性。  相似文献   

2.
Toughness and mechanical property data are presented for a carboxyl-terminated acrylonitrile butadiene (CTBN) rubber-modified epoxy resin in the temperature range 20 to – 110° C. A toughening model based on ultimate strain capability and tear energy dissipation of the rubber, present as dispersed microscopic particles in an epoxy matrix, is used to explain the suppression of composite toughness (G Ic ) below – 20° C. The toughness loss is attributed to a glass transition in the rubber particles, and to a secondary transition in the epoxy resin, both occurring in the range – 40 to – 80° C. Strain-tofailure and modulus measurements on bulk rubber-epoxy compounds, formulated to simulate rubber particle compositions, confirm a decrease in rubber ductility coincident with the onset of composite toughness loss. An increase in rubber tear energy associated with its transition to a rigid state can explain the observation that even at low temperatures composite toughness generally remains significantly higher than that of pure epoxy. Although the low-temperature epoxy transition reduces molecular mobility in the matrix phase, residual ductility in, and energy dissipation by, the rubber particles determine the extent of composite toughness suppression. The low-temperature data bear out the particle stretching-tearing model for toughening.  相似文献   

3.
A liquid carboxyl-terminated butadiene–acrylonitrile copolymer (CTBN) and SiO2 particles in nanosize were used to modify epoxy, and binary CTBN/epoxy composites and ternary CTBN/SiO2/epoxy composites were prepared using piperidine as curing agent. The morphologies of the composites were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM), and it is indicated that the size of CTBN particles increases with CTBN content in the binary composites, however, the CTBN particle size decreases with the content of nanosilica in the ternary composites. The effects of CTBN and nanosilica particles on the mechanical and fracture toughness of the composites were also investigated, it is shown that the tensile mechanical properties of the binary CTBN-modified epoxy composites can be further improved by addition of nanosilica particles, moreover, obvious improvement in fracture toughness of epoxy can be achieved by hybridization of liquid CTBN rubber and nanosilica particles. The morphologies of the fractured surface of the composites in compact tension tests were explored attentively by field emission SEM (FE-SEM), it is found that different zones (pre-crack, stable crack propagation, and fast crack zones) on the fractured surface can be obviously discriminated, and the toughening mechanism is mainly related to the stable crack propagation zone. The cavitation of the rubber particles and subsequent void growth by matrix shear deformation are the main toughening mechanisms in both binary and ternary composites.  相似文献   

4.
The fracture toughness and uniaxial tensile yield strengths of unmodified and CTBN-rubber-modified epoxies were measured under hydrostatic pressure. The purpose of these experiments was to learn how suppressing cavitation in rubber particles affects the deformation mechanisms and the fracture toughness of rubber-modified epoxy. It was found that the cavitation of CTBN-rubber could be suppressed at a relatively low pressure (between 30 and 38 M Pa). With cavitation suppressed, the rubber particles are unable to induce massive shearyielding in the epoxy matrix, and the fracture toughness of the rubber-modified epoxy is no higher than that of the unmodified epoxy in the pressure range studied. Unmodified epoxy shows a brittle-to-ductile transition in fracture toughness test. The reason for this transition is the postponement of the cracking process by applied pressure.Work performed while on a sabbatical leave at the University of Michigan.  相似文献   

5.
Clay-modified styrene-butadiene-styrene (SBS) rubber is utilized to toughen polypropylene (PP). The SBS rubber is found to have good compatibility with clay particles. SBS rubber helps to finely disperse clay particles in PP matrix. Mode-I fracture mechanisms are investigated using optical microscopy and transmission electron microscopy techniques. Rubber particle cavitation and matrix shear yielding are found to be the main toughening mechanisms in PP/SBS system. In the case of PP/SBS/clay system, widespread rubber particle cavitation, which appears to be facilitated by the presence of clay particle inclusions inside the SBS rubber particles, takes place in the PP matrix. This, in turn, leads to the formation of a bigger shear yielded zone in PP matrix. As a result, an enhanced toughness is observed.  相似文献   

6.
Carboxyl terminated butadiene acrylonitrile (CTBN) was added to epoxy resins to improve the fracture toughness, and then two different lateral dimensions of graphene nanoplatelets (GnPs), nominally <1 μm (GnP-C750) and 5 μm (GnP-5) in diameter, were individually incorporated into the CTBN/epoxy to fabricate multi-phase composites. The study showed that GnP-5 is more favorable for enhancing the properties of CTBN/epoxy. GnPs/CTBN/epoxy ternary composites with significant toughness and thermal conductivity enhancements combined with comparable stiffness to that of the neat resin were successfully achieved by incorporating 3 wt.% GnP-5 into 10 wt.% CTBN modified epoxy resins. According to the SEM investigations, GnP-5 debonding from the matrix is suppressed due to the presence of CTBN. Nevertheless, apart from rubber cavitation and matrix shear banding, additional active toughening mechanisms induced by GnP-5, such as crack deflection, layer breakage and separation/delamination of GnP-5 layers contributed to the enhanced fracture toughness of the hybrid composites.  相似文献   

7.
To study the toughening mechanisms of liquid rubber (LR) and core-shell rubber (CSR) in bulk epoxy and composite laminate, experimental and numerical investigations were carried out on compact tension (CT) and double-cantilever-beam (DCB) specimens under mode-I loading. The matrix materials were pure epoxy (DGEBA), 15% LR (CTBN) and 15% CSR modified epoxies. Experimental results and numerical analyses showed that both liquid rubber (LR) and core-shell rubber (CSR) could improve significantly the fracture toughness of pure epoxy (DGEBA). However, the high toughness of these toughened epoxies could not be completely transferred to the interlaminar fracture toughness of the unidirectional carbon fibre reinforced laminate. The main toughening mechanism of CSR in bulk epoxy was the extensive particle cavitation, which greatly released the crack-tip triaxiality and promoted matrix shear plasticity. The poor toughness behavior of CSR in the carbon fibre laminate was thought to be caused by the high constraint imposed by the stiff fibre layers. No particle cavitation had been observed in LR modified epoxy and the main toughening mechanism was merely the large plastic deformation near the crack-tip due to the rubber domains in the matrix which results in a lower yield strength but a higher elongation-to-break.  相似文献   

8.
The fracture energies of glass fibre composites with an anhydride-cured epoxy matrix modified using core–shell rubber (CSR) particles and silica nanoparticles were investigated. The quasi-isotropic laminates with a central 0°/0° ply interface were produced using resin infusion. Mode I fracture tests were performed, and scanning electron microscopy of the fracture surfaces was used to identify the toughening mechanisms.The composite toughness at initiation increased approximately linearly with increasing particle concentration, from 328 J/m2 for the control to 842 J/m2 with 15 wt% of CSR particles. All of the CSR particles cavitated, giving increased toughness by plastic void growth and shear yielding. However, the toughness of the silica-modified epoxies is lower as the literature shows that only 14% of the silica nanoparticles undergo debonding and void growth. The size of CSR particles had no influence on the composite toughness. The propagation toughness was dominated by the fibre toughening mechanisms, but the composites achieved full toughness transfer from the bulk.  相似文献   

9.
For a rubber-toughened piperidine-DGEBA epoxy resin, the interface between the rubber particle and the epoxy resin matrix was modified by an epoxide end-capped carboxyl terminated butadiene and acrylonitrile random copolymer (CTBN). The end-capping epoxides used were a rigid diglycidyl ether of bisphenol-A (Epon 828), a short-chain flexible diglycidyl ether of propylene glycol (DER 736), and a long-chain flexible diglycidyl ether of propylene glycol (DER 732). The microstructures and the fracture behaviour of these rubber-modified epoxy resins were studied by transmission electron microscopy and scanning electron microscopy. Their thermal and mechanical properties were also investigated. In the rubber-modified epoxy resins, if the added CTBNs were end-capped by a flexible diglycidyl ether of propylene glycol (DER 732 or DER 736) before curing, the interfacial zone of the undeformed rubber particle, the degree of cavitation of the cavitated rubber particle on the fracture surface and the fracture energy of the toughened epoxy resin were all significantly increased. The toughening mechanism based on cavitation and localized shear yielding was considered and a mechanism for the interaction between cavitation and localized shear yielding that accounts for all the observed characteristics is proposed.  相似文献   

10.
Fracture toughness of the nano-particle reinforced epoxy composite   总被引:2,自引:0,他引:2  
Although thermoset polymers have been widely used for engineering components, adhesives and matrix for fiber-reinforced composites due to their good mechanical properties compared to those of thermoplastic polymers, they are usually brittle and vulnerable to crack. Therefore, ductile materials such as micro-sized rubber or nylon particles are added to thermoset polymers are used to increase their fracture toughness, which might decrease their strength if micro-sized particles act like defects.In this work, in order to improve the fracture toughness of epoxy adhesive, nano-particle additives such as carbon black and nanoclay were mixed with epoxy resin. The fracture toughness was measured using the single edge notched bend specimen at the room (25 °C) and cryogenic temperature (−150 °C). From the experimental results, it was found that reinforcement with nano-particles improved the fracture toughness at the room temperature, but decreased the fracture toughness at the cryogenic temperature in spite of their toughening effect.  相似文献   

11.
In this work, we developed a strategy to balance the toughness and thermal resistance of epoxy composites by incorporating the multi-scale rubber particles. Two types of rubber i.e. the phase-separation-formed submicron liquid rubber (LR) and preformed nano-scale powered rubber (PR) particles were chosen as tougheners. It was found that the combination of these multi-scale rubber particles not only provides superior efficiency in enhancing the impact resistance of epoxy composites, but also results in balanced glass transition temperature. In particular, the highest gain in impact strength was obtained for the ternary composites containing 9.2 wt% submicron liquid rubber and 9.2 wt% nano-sized powered rubber which were ∼112% higher than the maximum enhancements of ∼49% and ∼66% for the corresponding binary composite systems with the single-phase rubber, respectively. The damage zone observation and fracture surface analysis suggested that the combined use of multi-scale particles was effective to promote matrix plastic deformation including void growth and shear banding induced by the improved rubber cavitation/debonding, which is likely responsible for the highly improved impact resistance of the ternary composites.  相似文献   

12.
An investigation was carried out to explore the morphology and mechanical properties of diglycidyl ether of bisphenol A epoxy resin (DGEBA) with liquid natural rubber possessing hydroxyl functionality (HLNR). Though modification of epoxies by synthetic rubber has been extensively studied not much attention has been paid to liquid natural rubber. Photo depolymerisation of natural rubber enables us to synthesise low molecular weight oligomers by varying the experimental parameters. Epoxy resin was cured using nadic methyl anhydride as hardener in presence of N,N-dimethyl benzyl amine accelerator. Hydroxylated natural rubber of different concentrations is used as modifier for epoxy resin. The addition of such chemically modified liquid rubber to an anhydride hardener–epoxy resin mixture has given rise to the formation of a two-phase microstructure in the cured systems, consisting of spherical particles of liquid natural rubber strongly bonded to the surrounding matrix, there by providing the required mechanism for toughness enhancement. Subinclusions of epoxy resin were present in the elastomer domains as secondary particles (particle in particle morphology) as evidenced from the SEM (scanning electron micrograph) photomicrographs. The origin of the so-called secondary phase separation is due to the combined effect of hydrodynamics, viscoelastic effects of rubber phase, diffusion, surface tension, polymerisation reaction and phase separation. In a dynamic asymmetric system, the diffusion of the fast dynamic phase is prevented by the slow dynamic phase, and hence the growth of fast dynamic phase gets retarded due to the slow dynamic phase. In the case of low viscosity blends the growth of fast dynamic phase turns fast and hence diffusion of fast dynamic phase cannot follow geometrical growth and cannot establish local concentration equilibrium and hence double phase separation takes place. The double phase separation is responsible for the enhanced impact and toughness behaviour of the blends. The mechanical behaviour of the liquid rubber-modified epoxy resin was evaluated in terms of tensile and flexural properties.  相似文献   

13.
The influence that the energy absorbing ability of an epoxy has on the cyclic fatigue resistance of a silane-bonded epoxy/glass interface in moist air was studied using the double cleavage drilled compression (DCDC) test. The material properties of two epoxies with similar chemical structures were controlled through the manipulation of the molecular weight between cross-links, M c, of the epoxy network. Two rubber-toughened epoxies with different nominal particle sizes (10–40 m and 1–2 m) were fabricated by adding a liquid butadiene/acrylonitrile copolymer to the epoxy resins. Mixtures of the silane-coupling agents 3-aminopropyltriethoxysilane (3-APES) and propyltriethoxysilane (PES) were used to treat the glass substrate in order to control the number of covalent bonds between epoxy and the glass. 3-APES has the ability to form primary bonds with both the epoxy and the glass, while PES forms primary bonds with only the glass. Experimental results showed that the manipulation of M c had little effect on the cyclic fatigue resistance of the epoxy/glass interface. However, incorporation of rubber particles gave a significant improvement in the fatigue resistance. The rubber particles allowed the microscopic, non-linear deformation mechanisms of cavitation and shear yielding to dissipate energy during fatigue crack growth. Smaller particles gave the greatest improvement to fatigue resistance; about a 75% improvement compared to the neat (non-modified) epoxy. Adjustment of the number of silane bonds between the neat epoxies and the glass had little effect within experimental scatter on the fatigue resistance of the interfaces, suggesting that the energy dissipated through the breaking of bonds at the interface was insignificant compared to the energy dissipated through plastic and other inelastic deformation mechanisms in the epoxy.  相似文献   

14.
Cryogenic mechanical properties are important parameters for epoxy resins used in cryogenic engineering areas. In this study, multi-walled carbon nanotubes (MWCNTs) were employed to reinforce diglycidyl ether of bisphenol F (DGBEF)/diethyl toluene diamine (DETD) epoxy system modified by poly(ethersulfone) (PES) for enhancing the cryogenic mechanical properties. The epoxy system was properly modified by PES in our previous work and the optimized formulation of the epoxy system was reinforced by MWCNTs in the present work. The results show that the tensile strength and Young’s modulus at 77 K were enhanced by 57.9% and 10.1%, respectively. The reported decrease in the previous work of the Young’s modulus of the modified epoxy system due to the introduction of flexible PES is offset by the increase of the modulus due to the introduction of MWCNTs. Meanwhile, the fracture toughness (KIC) at 77 K was improved by about 13.5% compared to that of the PES modified epoxy matrix when the 0.5 wt.% MWCNT content was introduced. These interesting results imply that the simultaneous usage of PES and MWCNTs in a brittle epoxy resin is a promising approach for efficiently modifying and reinforcing epoxy resins for cryogenic engineering applications.  相似文献   

15.
The degradation of interlaminar shear strength and shear fracture toughness of glass/epoxy composites due to uptake of distilled water and sea water has been studied. The composites were immersed in water for up to eight months at temperatures up to 70 °C. Unreinforced matrix resin samples were also immersed for periods up to 2 years. Sea water was absorbed less rapidly than distilled water. Weight gains below 1% did not influence the shear strength while higher weight gains reduced shear strength up to 25%. The loss in apparent interlaminar shear strength was uniquely related to specimen weight gain. Mode II fracture toughness, G IIc, also decreased with increasing immersion time after an initial incubation period, but the accelerated tests were found to reduce G IIc less than the room temperature tests at comparable weight gains.  相似文献   

16.
The nitinol coating against cavitation erosion was prepared by air plasma spraying and sealed with epoxy resin successfully. After the coating sealed with epoxy resin, the pores and cracks of the coating were filled with the epoxy resin and then the cohesiveness between the lamellae was improved, the hardness increased from 3.68 GPa to 7.49 GPa, the energy recovery ratio (superelasticity) was improved from 41.9 % to 49.0 % and the toughness was enhanced from 0.011 GPa to 0.045 GPa. During the cavitation erosion test, the epoxy resin reduced the cavitation resources and absorbed the impact energy from the micro-jet or shock waves. Meanwhile, the high hardness and superelasticity can help the coating to resist cavitation erosion and the high toughness can delay the expansion of cracks during the cavitation erosion test. As a result, after cavitation erosion for 300 min the cumulative mass loss of the coating sealed by epoxy resin was 1/5 times as much as that of the nitinol coating without sealing. Therefore, the cavitation erosion resistance of the nitinol coating can be improved by sealed with epoxy resin.  相似文献   

17.
A bimodal rubber-particle distributed epoxy resin was made by simultaneous addition of two kinds of liquid rubbers, CTBN1300X9 and CTBN1300X13. These rubbers were added at a constant total rubber content but with varying weight ratios. The microstructure and fracture behaviour of these rubber-modified epoxy resins have been studied. A strong increase in the fracture resistance was found for the bimodal rubber-particle distributed epoxy resin. The role of the small particle is thought to toughen the shear bands between large particles. The role of large particle is thought to induce a large-scale shear deformation in the crack front. The synergistic effect of these particles gives rise to a strong increase in the toughness of these bimodal rubber-particle distributed epoxy systems.  相似文献   

18.
Toughening of epoxies through thermoplastic crack bridging   总被引:3,自引:0,他引:3  
The fracture toughness and toughening mechanism of two epoxy matrices containing varying concentrations of pre-formed polyamide-12 particles was investigated. The pre-formed thermoplastic modifier was used to keep the physical and morphological characteristics of the second phase constant while varying the matrix intrinsic toughness to simplify the interpretation of toughening results. We observed that these particles toughened the epoxies through a crack bridging mechanism involving large plastic deformation of the second phase.This mechanism was found to be effective independent of the potential of the matrix for plastic deformation since the increasing fracture toughness was accomplished without significant amounts of plastic deformation in the epoxy matrix. A quantitative model was adapted to account for the increase in toughness due to the crack bridging mechanism. From this model, it was possible to determine the factors which are most important when attempting to toughen a material through thermoplastic crack bridging. A better understanding of the specific factors which influence the efficiency of the crack bridging mechanism enables the fracture properties of brittle materials to be further improved with thermoplastic addition. This was shown to be very important when attempting to enhance the toughness of materials which are believed to be un-toughenable by conventional rubber modification, or materials whose other mechanical properties suffer from the addition of elastomeric materials.  相似文献   

19.
采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。  相似文献   

20.
Damage zones that form around crack tips before the onset of fracture provide significant data for evaluating the fracture behavior of polymeric materials. The size of the damage zone correlates closely with the fracture toughness of the resin. In this study, we investigate the relationship between the fracture toughness and damage zone size around crack tips of a rubber-modified epoxy resin under mixed-mode conditions. The fracture toughness, GC, based on the energy release rate, is measured using an end-notched circle type (ENC) specimen. The deformation of rubber particles in the damage zones is also observed using an optical microscope. The results show that the fracture toughness, GC, of the rubber-modified epoxy resin is closely related to the area of the damage zone. In the specimen with a loading angle of 30°, the rubber particles were deformed ellipsoidally due to the difference between the first and second principal stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号