共查询到18条相似文献,搜索用时 78 毫秒
1.
针对稀疏自适应匹配追踪(SAMP)算法中存在的运行速度慢、重建效果欠佳的问题,提出了一种新的自适应的子空间追踪算法(MASP)。采用SAMP算法中分段的思想,先对半减小预估稀疏度,再逐一增加,得到真实稀疏度后,再利用子空间追踪算法对原始信号进行重构。实验表明,相比于SAMP算法,该算法在相同观测数量的情况下,具有较快的运行时间和较好的重建效果,其中,在重构信噪比方面平均提高8.2%。 相似文献
2.
3.
4.
目的:重构算法是压缩感知理论的关键问题之一,为了减少压缩感知方向追踪算法重建时间,并确保相对较高的重建精度,提出了一种非单调记忆梯度追踪(memory gradient pursuit,MGP)重构信号处理算法。方法:该算法建立在方向追踪框架下,采用正则化正交匹配策略实现了原子集的快速有效选择,对所选原子集利用非单调线性搜索准则确定步长,用记忆梯度算法计算更新方向,从而得到稀疏信号估计值。结果:该算法充分利用记忆梯度算法在Armijo线搜索下全局收敛性快速稳定的优点避免收敛到局部最优解,提升收敛效率。提出的MGP算法运行时间上比近似共轭梯度追踪算法缩短30%,可以精确重构一维信号和二维图像信号。结论:实验结果表明,该算法兼顾了效率和重建精度,有效提高信号重建性能,在相同测试条件下优于其他同类的重构算法。 相似文献
5.
传统的奈奎斯特采样定理规定采样频率最少是原信号频率的两倍,才能保证不失真的重构原始信号,而压缩感知理论指出只要信号具有稀疏性或可压缩性,就可以通过采集少量信号来精确重建原始信号.在研究和总结已有匹配算法的基础上,提出了一种新的自适应空间正交匹配追踪算法(Adaptive Space Orthogonal Matching Pursuit,ASOMP)用于稀疏信号的重建.该算法在选择原子匹配时采用逆向思路,引入正则化自适应和空间匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,最终实现了原始信号的精确重建.最后与传统MP和OMP算法进行了仿真对比,结果表明该算法的重建质量和算法速度均优于传统MP和OMP算法. 相似文献
6.
《计算机应用与软件》2013,(7)
针对压缩感知子空间追踪SP(subspace pursuit)算法必须以信号稀疏度为先验知识,而现实中图像稀疏度未知这一问题,提出改进SP算法MSP(modified subspace pursuit)。首先对信号的稀疏度进行自适应估计,其次在迭代过程中,通过给定的步长因子对稀疏度进行更新,使之逐渐逼近正确子空间,当重构误差小于阈值时,停止迭代,实现稀疏信号的重构。重构图像表明:MSP算法在运算时间和重构精度上均优于其他同类算法,实现了图像的快速精确重构。 相似文献
7.
针对目前的贪婪类算法在实际应用中出现的重构遮挡和虚假等问题,本文在分析该问题产生的原因基础上,提出了一种新的贪婪回溯子空间追踪(greedy backtracking subspace pursuit, GBSP)算法。该算法基本思想是在每次的迭代过程中,采用回溯反馈和贪婪精选的思路进行支撑集选择。具体而言,在原子识别阶段,从残差投影中挑选出绝对值最大的 ( 是信号稀疏度)个投影值位置,添加到候选支撑集中,为降低在此步骤中产生的错误概率,每次只将候选支撑集中的前s( )个最大值对应的位置添加到真实支撑集中进行更新;此后再进行投影计算和残差更新,直到完成支撑集的选择。由于新算法结合了正交匹配追踪算法和子空间追踪算法二者的优势,因此可较好的解决重构遮挡与虚假问题,使得压缩感知重构算法更具实用性。 相似文献
8.
压缩感知理论是一种利用信号的稀疏性或可压缩性而把采样与压缩融为一体的新理论体系,它成功地克服了传统理论中采样数据量大、资源浪费严重等问题。该理论的研究方向主要包括信号的稀疏表示、测量矩阵的设计和信号的重构算法。其中信号的重构算法是该理论中的关键部分,也是近年来研究的热点。本文主要对匹配追踪类重构算法作了详细介绍,并通过仿真实验结果对这些算法进行了对比和分析。 相似文献
9.
基于压缩感知的局部场电位信号重构算法研究 总被引:2,自引:0,他引:2
研究局部场电位信号(Local Field Potential,LFP)的重构问题.依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力.为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法.利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型.仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度. 相似文献
10.
11.
首先阐述了压缩感知(CS)的理论框架,然后分析了光电容积脉搏波(PPG)信号的稀疏性,最后提出了基于CS理论PPG信号的压缩重构框架。基于此框架采用正交匹配追踪算法和改进的正交匹配追踪算法对已压缩的信号进行重构,实验结果表明,PPG信号长度的选取、压缩比的大小以及观测个数的多少都对重构性能有重要影响。 相似文献
12.
针对压缩感知理论的稀疏分析模型下的子空间追踪算法信号重构概率不高、重构性能不佳的缺点,研究了此模型下的稀疏补子空间追踪信号重构算法;通过选用随机紧支框架作为分析字典,设计了目标优化函数,改进优化了稀疏补取值方法,改进了算法迭代过程,实现了改进的稀疏补分析子空间追踪新算法(IASP).实验结果证明,所提算法的信号完全重构概率明显高于分析子空间跟踪(ASP)等5种算法的信号完全重构概率;对于含高斯噪声的信号,所提算法重构信号的整体平均峰值信噪比明显超过ASP等3种算法整体平均峰值信噪比(PSNR),但略低于贪婪分析追踪(GAP)等2种算法的整体平均峰值信噪比.所提算法可用于语音和图像信号处理等领域. 相似文献
13.
针对压缩感知中未知稀疏度信号的重建问题,提出一种新的压缩感知的信号重建算法,即自适应正则化子空间追踪(Adaptive Regularized Subspace Pursuit,ARSP)算法,该算法将自适应思想、正则化思想与子空间追踪(Subspace Pursuit,SP)算法相结合,在未知信号稀疏度的情况下,自适应地选择支撑集原子的个数,利用正则化过程实现支撑集的二次筛选,最终能实现信号的精确重构。仿真结果表明,该算法能够精确重构原始信号,重建效果优于SP算法、正则化正交匹配追踪(ROMP)算法、稀疏度自适应匹配追踪(SAMP)算法、压缩采样匹配追踪(CoSaMP)算法等。 相似文献
14.
基于压缩感知信号重建的自适应正交多匹配追踪算法* 总被引:1,自引:2,他引:1
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法 相似文献
15.
为了实现基于压缩感知理论的信号欠采样和重建,采用模拟信息转换器和正交匹配追踪(0rthogonal Matching Pursuit,OMP)算法对正弦脉冲信号的欠采样和信号重建进行了仿真分析。通过Matlab仿真分析验证了压缩感知理论在信号欠采样和重建过程中的可行性,通过对此在不同信噪比下的效果发现,在高信噪比时,性能较好,可以为信号采样系统和信号恢复处理系统的设计应用提供理论参考。最后,总结讨论了压缩感知在射频和无线通信领域的应用价值。 相似文献
16.
可压缩传感或可压缩采样(Compressed Sensing或Compressive Sampling 简称CS)是数据采样同时实现压缩的新理论、新技术。分块CS(Block Compressed Sensing)的图像重构算法采用相同的采样算子以块×块的方式获取图像,解决了现有的CS方法中可压缩采样算子所需存储较大的问题,而且算法中应用线性算子、凸集投影法和Contourlet变换域的硬阈值法进一步优化恢复图像,能更有效捕获图像的复杂结构。实验结果表明分块CS的图像重构算法较现有的其他CS方法实现代价更低,且在相同CS观测数条件下,计算速度几乎相同的同时图像质量提高了3~4 dB。 相似文献
17.
在认知无线电网络中,认知用户随机接入宽带频谱进行数据传输,但是这样很容易受到恶意用户的干扰,这些恶意用户随意地接入共享频带进行信号传输,这些信号会干扰主用户和认知用户。为此,提出了一种基于压缩感知的信号分离方法。该方法可以很好地从宽带信号中分离出恶意用户信号。算法主要采用以下三个步骤:(1)所有认知用户采用压缩感知技术从宽带频谱中恢复各信号;(2)认知用户将分离的信号发送到融合中心,融合中心通过小波边缘检测的方法确定频谱边缘,并按照边缘特性将频谱分成若干频段;(3)融合中心根据具体特征对每个子频段进行信号分离。分析和仿真结果表明,这种新的基于压缩感知的宽频带信号分离方法能很好地从宽带信号中将含有恶意用户干扰的混合信号分离出来。 相似文献
18.
信号重构是压缩感知过程中的重要环节,迭代硬阈值(IHT)算法因具有较好的重构性能被广泛应用,但其收敛速度比较慢。近期提出的半迭代硬阈值算法(SIHT)虽然可实现快速收敛,但对测量矩阵的尺度缩放非常敏感,依赖性强,大大限制了其应用范围。受OMP对MP算法改进启发,对SIHT算法进行改进,提出了正交半迭代硬阈值(OSIHT)重构算法。该算法不仅取消了对测量矩阵的依赖性,还有效改善了图像重构质量,减少运行时间。 相似文献