首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究锆英石对四价锕系核素的固化能力,利用Ce4+模拟四价锕系核素。以ZrO2、SiO2和CeO2粉体为原料设计了包容量为5%~20%(摩尔分数)的锆英石固化体配方,在1500℃下保温22h进行固化体的制备。利用X射线衍射仪、扫描电子显微镜、红外光谱仪和激光拉曼探针对所制备固化体的物相、结构及微观形貌进行了分析。研究结果表明:在固化体中虽加入了5%~20%的CeO2,但主物相仍以锆英石物相为主,且均具有较高的结晶度,随着CeO2添加量的增加,固化体的无序程度略显增强。  相似文献   

2.
以天然锆英石、模拟放射性焚烧灰、CaCO3、TiO2、UO2为原料,采用高温固相反应,对人造岩石固化掺铀模拟放射性焚烧灰进行研究。借助XRD、SEM、抗浸出性能测试等分析测试方法,研究固化体的性能。结果表明:在空气气氛下烧结,固化体的晶相为CaZrTi2O7[Ca(Zr,U)Ti2O7]、CaTiSiO5、CaTiO3和CaUO4,一部分U固溶于Ca(Zr,U)Ti2O7中;较多CaZrTi2O7的生成有利于Ca(Zr,U)Ti2O7固溶更多的U;模拟放射性焚烧灰掺量为60%、UO2含量为6.88%的人造岩石固化体,1~35d铀的归一化浸出率为0.17~2.81μg/(cm2•d),42~192d铀的归一化浸出率为0.09~0.13μg/(cm2•d)。  相似文献   

3.
锆基烧绿石An2Zr2O7以优异的抗辐照性能和化学稳定性成为高放废物中锕系核素的理想固化基材,高放废物固化体在长期贮存过程中不断衰变产生衰变子体,必将影响固化体的结构和性能。本文以镧系核素Nd模拟锕系核素Pu、Am,La模拟其衰变子体U、Np,通过溶胶凝胶方法合成了(LaxNd1-x)2Zr2O7模拟固化体。样品经高能γ辐照,辐照剂量为233.78kGy。利用X射线衍射、Raman振动光谱和结构精修方法对辐照前后的系列样品进行了分析。结果表明:(LaxNd1-x)2Zr2O7系列固化体均为单一的烧绿石结构相;固化体的晶格常数随La的增加呈线性增加,晶体结构趋于有序化,意味着衰变子体有助于固化体趋向于更加有序的烧绿石结构。γ辐照和结构精修结果表明,随着子体的增加,An—O48f键长增大,离子键结合力减小,在辐照情况下晶格易发生无序化,抗辐照能力减弱。  相似文献   

4.
氧化硼对铁磷酸盐玻璃陶瓷固化体的影响   总被引:1,自引:0,他引:1  
研究了不同B2O3掺量对铁磷酸盐玻璃陶瓷高放废物固化体结构和性能的影响。应用溶出速率法(DR)对固化体进行了化学稳定性测试,使用傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)方法研究了样品的结构。研究结果表明:玻璃陶瓷固化体的主晶相为独居石;B2O3的引入对玻璃陶瓷固化体的化学稳定性影响较大,以10%(摩尔分数)的B2O3代替Fe2O3制得的固化体化学稳定性最佳,其28d的质量浸出率约为7.81×10-9g•cm-2•min-1;试样中存在大量正磷酸基团[PO43-和少量焦磷酸基团[P2O74-,无偏磷酸基团[PO3-存在,固化体中的B主要以[BO4]四面体基团形式存在。  相似文献   

5.
针对硅基磷钼酸铵(AMP/SiO2)吸附剂在分离模拟高放废液中Cs后的处理,以矿物水铝英石、丝光沸石、4A型沸石以及斜发沸石为固化基材,采用冷压/烧结工艺制备了硅酸盐陶瓷固化体。分析了固化体的微观形貌、物相组成和表面元素分布,并探讨了固化体的固化机理、抗浸出性能和耐辐照稳定性。结果表明:1 200 ℃下烧结所得固化体的表面均出现熔融现象,结构更加致密;水铝英石烧结固化体中形成了铯榴石-CsAlSi2O6晶相,可有效抑制Cs的挥发,Cs固定率达93.1%。500 kGy γ射线辐照后,固化体中的主要晶相均未发生变化,且在25 ℃去离子水中浸出后,Cs的浸出百分比仅为0.79%。  相似文献   

6.
锆基烧绿石An2Zr2O7以优异抗辐照性能和化学稳定性成为高放废物中锕系核素的理想固化基材。镧系核素常作为替代核素进行锕系核素的固化研究,实验以硝酸盐为原料,以三价的镧系元素(La、Nd)模拟锕系元素,采用sol-喷雾热解方法在1 200℃、6h内合成了(La、Nd)2Zr2O7烧绿石。采用粉末X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱分析方法对合成的样品进行了结构表征,结果表明:利用该方法合成了单一物相的烧绿石立方结构An2Zr2O7;相对于La2Zr2O7的烧绿石结构,Nd2Zr2O7烧绿石具有向萤石结构转变的趋势。该合成方法为目前的高放废液人造岩石固化提供了一定的技术基础。  相似文献   

7.
以ZrSiO4、CaCO3、TiO2、Al2O3、Ce2C6O12•10H2O为原料,采用固相反应工艺合成掺Ce钙钛锆石基钛酸盐组合矿物。利用XRD、BSE、EDS等分析方法,研究组合矿物的制备及其对Ce的固溶。结果表明:合成掺Ce钙钛锆石基钛酸盐组合矿物的较佳温度为1230℃;组合矿物的主要晶相为钙钛锆石固溶体,次要晶相是榍石和CaTiO3的固溶体;CeO2在组合矿物中的最大固溶量为21.39%;组合矿物固溶Ce4+的机制较复杂,Ce4+固溶在Ca2+位或Zr4+位,Al3+固溶在Ti4+位对Ce4+固溶在Ca2+位有电价补偿作用。  相似文献   

8.
为研究锆英石对放射性核素Pu(Ⅳ)的固化能力,选用Ce(Ⅳ)作为Pu(Ⅳ)的模拟替代物质,以ZrO2、SiO2和CeO2粉体为原料,在1500 ℃条件下通过保温72 h进行ZrxCe1-xSiO4(0≤x≤0.5)系列样品的制备。利用XRD对所获样品的物相和结构进行分析,并采用Rietveld结构精修方法对样品的晶胞参数进行精细化计算。结果表明:当0≤x≤0.05时,样品保持为锆英石相;当x>0.05时,有CeO2物相出现。在锆英石相范围内,晶胞参数a、c、V与x之间符合线性关系。  相似文献   

9.
滕元成  窦天军 《辐射防护》2007,27(1):19-24,31
采用天然锆英石为固化基材,对模拟放射性废物泥浆的陶瓷固化进行了探索研究.借助失重-差示扫描量热法(TG-DSC)、X射线衍射法(XRD)等分析手段,研究了工艺因素对固化体结构性能的影响.实验结果表明:对于主要成分为Fe(OH)3胶体、钾、钠的硫酸盐和高锰酸盐的模拟废物,当废物掺量为10%、30%、50%时,在本工艺条件下,固化样品开始烧结温度分别为1140 ℃、1100 ℃、1100 ℃.ZrSiO4在1170 ℃开始分解,生成ZrO2晶体,在1240 ℃左右完全分解.烧结温度影响烧结体中主要物相.当烧结温度较低(<1170 ℃)时,烧结体主要物相是锆英石(ZrSiO4)、Fe2O3和玻璃相;当烧结温度达到1240 ℃时,主要物相为ZrO2晶体、玻璃相和Fe2O3.由于废物的主要成分硫酸盐及Fe(OH)3在1100 ℃以上分解,对固化体的致密烧结产生了不利的影响,烧结体出现膨胀起泡现象,致密度较差,说明本工艺尚需进一步改善.  相似文献   

10.
Gd1.6Nd0.4Zr2O7烧绿石的快速合成及其组织结构研究   总被引:1,自引:0,他引:1  
为探索Gd2Zr2O7烧绿石快速固化高放废物中锕系核素的新途径,实验用高温高压固相反应法在3~4GPa压力、1573~1673K温度范围内合成了Gd1.6Nd0.4Zr2O7烧绿石固化体,并利用X射线衍射仪、扫描电镜对样品进行了分析。结果表明:高温高压固相反应法可在极短时间(15min)内合成完全固溶的Gd1.6Nd0.4Zr2O7立方烧绿石固化体,较常用制备方法(一般合成时间不低于48h)快近200倍;用该技术合成的样品在常温常压下的相转变温度及压力得以显著提高,烧绿石相更趋稳定;样品晶格常数随Nd含量的增加及合成温度的升高而逐渐增大,随合成压力的增加而逐渐减小。这种快速高效的合成方法为未来开展高放核素的工业固化提供了一种新的技术途径和基本数据参考。  相似文献   

11.
利用非破坏性分析法检验用于刻度分段γ扫描(SGS)装置的标样。采用分段γ扫描技术测量了8个装有U3O8的铀标样、8个装有PuO2的钚标样。检测铀标样和钚标样装钚量的准确性以及铀标样中U3O8和钚标样中PuO2与介质混合的均匀性。检测结果表明:SGS标样的装料量的准确性好于1%,标样中料样和介质混合的均匀性好于3%。  相似文献   

12.
为获得钆锆烧绿石基固化体固化Pu后的物理性能、物相变化及微观形貌,本研究用Ce4+模拟Pu4+,以Gd2O3、ZrO2和CeO2粉体为原料,采用高温固相法,制备不同固溶度(0~100%,按摩尔计)的系列钆锆烧绿石固化体,并对密度、硬度、物相和微观形貌等进行表征。结果表明:实验所得系列固化体的密度和硬度均随着x的增大而增大,硬度HV与x满足关系式HV=661.272 73+223.936 36x(R2=0.946 38)。在x=0.0时,所得固化体为单一的烧绿石结构;在x=0.2时,固化体从烧绿石结构转变为萤石型结构;在0.2≤x≤2.0范围内,固化体均为单一萤石型结构。固化体微观形貌不规则,呈板块状。  相似文献   

13.
以天然锆英石、模拟放射性焚烧灰为原料,对模拟放射性焚烧灰的陶瓷固化进行了初步研究.借助X射线衍射(XRD)、扫描电镜(SEM)、密度分析等分析测试方法,研究了陶瓷固化体烧结温度和物相组成.结果表明,随着模拟放射性焚烧灰掺量的增加,ZrSiO4的分解温度降低.陶瓷固化体的主要晶相及其烧结温度与模拟放射性焚烧灰的掺量有关,当模拟放射性焚烧灰掺量为20%时,固化体的较佳烧结温度范围是1 230~1 290℃,主要晶相为ZrSiO4;当掺量40%时,固化体的较佳烧结温度范围是1 200~1 260℃,主要晶相为ZrSiO4和ZrO2;当掺量60%时,固化体的较佳烧结温度范围是1 290~1 350℃,主要晶相为ZrO2.  相似文献   

14.
以CaCO3、H2SiO3、TiO2、Nd2O3和Al2O3为原料,通过高温固相反应合成榍石固溶体,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等分析手段,研究钕在榍石固溶体中的固溶情况。结果表明,引入Al3+作为电价补偿时,Nd3+能较好地固溶在Ca1-yNdyTi1-yAlySiO5固溶体中,其固溶量为12.3%~13.56%;不引入电价补偿时,Nd较难在Ca缺位的Ca1-3/2yNdyTiSiO5固溶体中固溶,其固溶量约为3.5%;合成掺Nd榍石固溶体的较佳温度为1270℃。  相似文献   

15.
本工作研究U3O8粉末制备工艺流程和工艺参数,测试制备出的U3O8粉末的物化性能以及U3O8粉末添加对UO2芯块产品质量的影响。分析结果表明:所制备的U3O8粉末可加到UO2粉末中而被回收利用;控制U3O8粉末加入量,可调节UO2芯块的密度和微观组织,制备出合格的UO2芯块,从而提高了金属铀的直收率和利用率。  相似文献   

16.
韩金盛  刘滨  蔡进  李文强 《同位素》2019,32(1):22-28
乏燃料中大部分次锕系(minor actinides, MA)核素半衰期较长,对环境具有长期放射性危害。分离 嬗变技术将次锕系核素从高放废液中分离出来,并通过反应堆嬗变为短寿命或稳定核素,从而消除其放射性危害。为研究次锕系核素与燃料均匀混合、制成嬗变棒和做燃料芯块镀层装载方式下在铅冷快堆中的嬗变特性,采用MCNP和SCALE程序进行模拟计算。结果表明,三种方式下237Np、241Am、243Am和混合次锕系核素使有效增殖因数keff降低,而244Cm和245Cm使keff升高,且245Cm可使keff大幅度增加。不同质量的混合次锕系核素装载后,三种方式下堆芯keff都随装载量的增加而降低,降低幅度由小到大分别为嬗变棒、均匀混合和镀层。不同次锕系核素装载量以均匀混合方式在堆芯经过550 d辐照后,237Np、241Am和243Am嬗变率均为正值,其中241Am嬗变率最大,而244Cm和245Cm嬗变率均为负值,245Cm增加明显,总的次锕系核素嬗变率为14%,可为次锕系核素在铅冷快堆中嬗变性能评价提供参考。  相似文献   

17.
随着核能的发展,乏燃料日益增多;核燃料燃耗逐渐增加,锕系核素的量会逐渐增大。锕系核素在玻璃中的溶解度很低,将锕系核素从高放废液中分离出来再进行人造岩石固化技术难度大,有必要开发高放废液和长寿命核素的处理新技术。本研究的目的是利用玻璃固化工艺制备玻璃一陶瓷,用结晶相固定锕系核素,玻璃相固定裂片核素。当高温玻璃熔融体被浇注到玻璃产品罐时,由于玻璃量大,降温速度很慢,这为晶核的形成、晶胞的生长提供了条件。  相似文献   

18.
采用反萃沉淀法,以H2C2O4乙醇水溶液反萃CCl4-TOA-CuCl2组成的有机相中的铜离子,利用相界面传质反应过程获取CuC2O4超细粉体。采用X射线衍射分析、电子显微分析(SEM和TEM)、激光粒度分析等手段,考察了有机相铜浓度、反萃液中乙醇的浓度、反萃温度以及反萃时间等操作条件对草酸铜超细粉体的粒径和形貌的影响。结果表明,在反萃沉淀过程中,有机相中铜浓度、反萃液中乙醇浓度、反萃温度对草酸铜沉淀颗粒的粒径和粒径分布影响较大,反萃时间的影响小;在适宜条件(有机相中TOA40%(体积比)和Cu2+浓度0.1mol/L,反萃液中草酸浓度0.1mol/L和乙醇浓度80%(体积比),反萃温度15℃以及反萃时间2h)下,可制备粒径约100nm的草酸铜超细粉体,粉体为蓝青色单斜晶系结构的球形颗粒。  相似文献   

19.
本文采用电子束(e) 氦离子(He+)、氢离子(H+)束同时复合辐照方式研究12Cr-ODS铁素体钢中氧化物弥散强化相(Y2O3)辐照损伤行为,对不同辐照方式下辐照区内的氧化物形貌变化进行原位观察。研究结果表明,15dpa辐照后,氧化物周围出现微小高密度空洞,相界面变得不规则,氧化物在此特定条件下发生体积收缩或长大,尺寸有少量变化,但无明显溶解现象,对钢的性能不会产生影响。  相似文献   

20.
101Mo是裂变燃耗诊断的重要核素之一,它的半衰期短,准确测定101Mo核衰变数据的难度大。本工作采用强度平衡法和全程记录法测量101Mo和101Tc的γ射线发射几率Pγ101Mo Pγ的强度平衡法测量结果比全程记录法的测定结果高5%,而101TcPγ的两种方法测定结果在不确定度范围内一致。有关101Mo的γ射线发射几率测量方法及其测定值有待进行进一步研究和测定。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号