共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
3.
建立了基于CCD和LahVIEW的光斑分析系统,以实时监测激光应用系统中光斑的状态.对通用图像采集卡的驱动程序进行配置以便在LabVIEW中调用.对采集到的原始图像用邻域平均法进行抑噪预处理,再用加权灰度重心法计算光斑的中心位置,用检测边缘的方法计算光斑尺寸.基于LabVIEW开发了具有独立界面的采集分析软件. 相似文献
4.
常用的基于高斯光束特性的激光光斑图像处理算法,处理远场光斑图像会丢失部分能量较低的光斑数据,致使处理出的光斑能量密度低端精度不能达到0.01J/cm2的需求。为了得到更精确的远场激光光斑数据信息,提出了基于噪声特性的激光光斑图像自动阈值处理算法。该算法在分析系统噪声特性的基础上,依据3原则确定图像提取阈值进行光斑图像处理。通过试验验证了该算法既能够有效抑制系统噪声,又能够改善光斑图像的处理质量,恢复光斑图像丢失的数据信息,使光斑能量密度低端达到探测需求。结果表明,基于噪声特性的光斑图像处理算法能够有效提高远场激光光斑的处理精度,更适用于远场激光光斑图像的处理。 相似文献
5.
6.
7.
8.
高重频脉冲激光引起CCD视频中的动态次光斑现象研究 总被引:1,自引:0,他引:1
研究分析了CCD光电转换后信号电荷的传输过程以及激光高亮度的特点.认为高亮度的激光容易使感光二极管饱和,从而使光生电荷不通过读出脉冲控制而直接溢出至垂直CCD中,形成溢出信号电荷包;高亮度激光在垂直CCD内的漏光信号较强,从而直接在垂直CCD中形成漏光信号电荷包.溢出信号电荷包和漏光信号电荷包不依赖读出脉冲而出现于垂直CCD中,它们叠加在一起称之为次信号电荷包.次信号电荷包,经过垂直CCD的耦合转移动作,就形成了区别于激光主光斑的次光斑.研究中对次光斑的间距及循环移动的规律给出了定量的分析.次光斑的间距由CCD的转移频率和激光的重频频率所决定.而相邻帧中,主光斑与次光斑的间距有周期性的变化,从而造成了CCD输出视频中的次光斑循环移动.这种变化是由CCD垂直扫描周期被激光脉冲间隔时间整除后的余数所决定的. 相似文献
9.
10.
11.
12.
激光光斑中心检测是光学测量中常用的关键技术,广泛应用在光学测量系统、光路自动准直系统、激光通信目标跟踪中。为了提高光斑中心及半径的检测精度和抗干扰性,提出了一种基于最优弧的激光光斑中心检测算法,该算法首先根据圆的对称性排除了受干扰边缘,然后选取对称性好的弧线作为最优弧,最后以最优弧的数据作为拟合数据,利用最小二乘法计算出圆的中心及半径,并与其他算法进行了比较。实验表明,该算法对于中心和半径的定位精度高、计算速度快,并有效地提高了中心检测的抗干扰性,适用于在线实时检测。 相似文献
13.
14.
15.
针对具有高反射性表面的轴类零件圆柱表面瑕疵的检测需求,以18650型锂电池壳为例,提出了一种基于机器视觉的激光检测方法。该方法根据零件表面的高反射性和曲面特性,选择一字线激光作为光源,可避免采用传统光源进行检测带来的难点。通过采集经由零件表面反射出的激光线图像进行图像分析,可以判断零件表面是否存在瑕疵并可对表面瑕疵进行分类。通过分析可以发现,零件表面瑕疵种类及尺寸与反射激光线图像变形形态及尺寸具有一定相关性,此结论对精确测量高反面瑕疵种类及尺寸有普遍适用价值。 相似文献
16.
随着光纤耦合激光器的应用需求不断增大,对光纤与激光器的耦合效率要求也随之增大。不同波长激光的聚焦点位置存在差异,激光聚焦点位置是影响耦合效率的重要因素之一,对激光聚焦点的精准定位具有一定的实用性。设计一个聚焦组合透镜组聚焦激光器光束,采用CCD相机采集激光聚焦点焦前、焦后位置图像,通过MATLAB软件处理采集的图像,圆拟合光斑并计算光斑直径,直径最小位置即是聚焦点位置.结果表明,不同波长激光聚焦点位置不同且焦距相对误差分别为0.59%和0.73%,测量的焦点位置和大小均可精确到0.001 mm。该方法设计简单,具有自动性和精确性,对不可见激光聚焦位置的判断更显优越. 相似文献
17.