首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High sensitive resistive type humidity sensor based titanium oxide/polyaniline (TiO2/PANI) nanocomposite thin films prepared by a sol–gel spin coating technique on an alumina substrate. The resultant nanocomposites were characterized by using X-ray diffraction (XRD), Field emission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV–Vis absorbance and energy dispersive spectra analysis. In the XRD patterns of both pure and TiO2/PANI composite confirms the deposition of PANI on TiO2 and the average size of the composite particle was found to be 32 nm. Large number of nano grain surface being covered by PANI, which agrees very well with the results obtained by XRD studies. FTIR and UV–Vis spectra reveal that the PANI component undergoes an electronic structure modification as a result of the TiO2 and PANI interaction. The room temperature resistivity was found to be for TiO2 and TiO2/PANI nanocomposite films 1.42?×?106 and 2.56?×?103 Ω cm respectively. The obtained TiO2/PANI nanocomposites sensor exhibited higher humidity sensing performance such as high sensitivity, fast response (20 s) and recovery time (15 s) and high stability.  相似文献   

2.
In the modern pace of the world, food safety is a major concern. In this work, a simple chemiresistive type gas sensor was fabricated to detect Escherichia Coli (E. coli) bacteria. Polyaniline (PANI) films were deposited on the indium tin oxide substrate by an electrochemical deposition method. TiO2 nanoparticles were synthesised by facile hydrothermal method. PANI films were modified using hydrothermally prepared TiO2 nanoparticles by a spin coating method. X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) and ultraviolet visible spectrophotometer techniques were used to characterise the PANI/TiO2 nanocomposites. The peaks obtained in the XRD pattern confirmed the anatase phase of TiO2 nanoparticles. FESEM analysis showed the nanofibrous structure of the nanocomposite. The FTIR characteristic peaks confirmed the formation of the nanocomposite. The electrical resistance of the sensors was evaluated as a function of the bacterial concentration. The PT2 (TiO2 coated 5 times on PANI) in comparison with PT1 (TiO2 coated 3 times on PANI) exhibited good sensitivity to the gas molecules at room temperature. The p‐n junction at PANI/TiO2 interface improved the physical adsorption of gas molecules. Since no specific antibodies or receptors are used, the sensor has the potential for adaptation to real‐life applications. Thus low cost, real‐time, portable, reusable and sensitive bacteria sensors were fabricated and tested.Inspec keywords: conducting polymers, nanoparticles, nanocomposites, visible spectra, ultraviolet spectra, microorganisms, nanosensors, adsorption, gas sensors, nanofabrication, nanofibres, X‐ray diffraction, titanium compounds, spin coating, field emission scanning electron microscopy, Fourier transform infrared spectra, polymer films, electrodeposition, electrical resistivity, wide band gap semiconductors, biological techniques, nanobiotechnologyOther keywords: simple chemiresistive type gas sensor, polyaniline films, indium tin oxide substrate, electrochemical deposition method, TiO2 nanoparticles, facile hydrothermal method, PANI films, spin coating method, gas molecules, portable bacteria sensors, reusable bacteria sensors, sensitive bacteria sensors, PANI‐TiO2 nanocomposite‐based chemiresistive gas sensor, Escherichia Coli bacteria detection, X‐ray diffraction, XRD, field emission scanning electron microscopy, FESEM, Fourier transform infrared spectra, FTIR spectra, ultraviolet‐visible spectra, anatase phase, nanofibrous structure, electrical resistance, bacterial concentration, p‐n junction, physical adsorption, temperature 293.0 K to 298.0 K, TiO2 , ITO  相似文献   

3.
Bentonite (bent) clay supported silver (Ag)/titanium dioxide (TiO2) nanocomposite material was green synthesized by facile thermal decomposition method in the absence of reducing and precipitating agents. The samples were characterized by XRD, BET, HR-SEM with EDX mapping, TEM with SAED patterns, XPS, PSA, FT-IR, and UV–Vis DRS. XRD and EDX spectra showed peaks of Ag and TiO2, confirming the formation of the Ag/TiO2 nanoparticles in the composite. TEM revealed the uniform distribution of Ag/TiO2 nanoparticles cluster on the surface of the bent with an average size of ~5 to 50 nm. The antibacterial activities of Na-bent, Ag, TiO2, and Ag/TiO2/bent nanocomposite samples were tested against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria by the well diffusion method. Furthermore, the cytotoxicity of Ag/TiO2/bent nanocomposite material was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Also, the succinate-dehydrogenase release showed the nontoxic nature of the nanocomposite at low concentrations. The cytotoxicity results of samples were evaluated using human embryonic kidney cell line (HEK 293) and have given excellent biocompatibility and cell proliferation in the in vitro studies.  相似文献   

4.
In this study, TiO2 nanocomposite films with 10 g/L of TiO2 and copper loaded TiO2 nanoparticles as nanofillers were deposited on the glass substrates using the sol gel dip-coating method. FE-SEM and UV-vis spectrophotometer were used to evaluate morphological and optical properties of copper loaded titania nanoparticles. In addition, XPS and water contact angle techniques were used to study the surface properties and superhydrophilicity of titania nanocomposite films, respectively. The results indicated that copper loaded TiO2 nanoparticles had a significant effect on the hydrophilicity of nanocomposite film and maintaining it in a dark place for a long time (6.2 degree for titania nanocomposite films with copper loaded nanoparticle and 23.7 degree for nanocomposite film with titania nanoparticles).  相似文献   

5.
Novel polystyrene microsphere (PSMS)-based PSMS/Si and polystyrene/silica nanoparticle/multi-walled carbon nanotube (PS/Si/MWCNT) nanocomposite has been prepared using in situ sol-gel and chemical amalgamation methods. Aniline monomer was introduced by in situ route to form PSMS/PANI, PSMS/PANI/Si and PSMS/PANI/Si/MWCNT nanocomposite. FESEM of nanocomposite indicated core-shell spherical and tubular morphology. Glass transition temperature (Tg) and maximum decomposition temperature (Tmax) of PSMS/PANI/Si/MWCNT nanocomposite were found as 295°C and 524°C, respectively, which were higher than the PSMS/PANI (Tg = 245°C; Tmax = 387°C) and PSMS/PANI/Si (Tg = 257°C; Tmax = 388°C) nanocomposite. For nanocomposite dispersion, tetrahydrofuran was studied as fine solvent. XRD depicted amorphous nature of PSMS/Si and PSMS/PANI/Si; however MWCNT reduced amorphous character of PSMS/PANI/Si/MWCNT. Electromagnetic interference (EMI) shielding effectiveness improved from 0.1 dB (PSMS) to 12.3 dB (PSMS/PANI/Si) to 24.5 dB (PSMS/PANI/Si/MWCNT). The increase in EMI shielding effectiveness was also observed with variation in log of conductivity from ?14 mho m?1 (PSMA) to 1.17 mho m?1 (PSMS/PANI/Si/MWCNT).  相似文献   

6.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

7.
This paper investigates the fabrication of titanium dioxide (TiO2)–cellulose hybrid nanocomposite and its possibility for a conductometric glucose biosensor. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N,N-dimethylacetamide solvent to fabricate TiO2–cellulose hybrid nanocomposite. The enzyme, glucose oxidase (GOx) was immobilized into this hybrid nanocomposite by physical adsorption method. The successful immobilization of glucose oxidase into TiO2–cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of the glucose biosensor is obtained in the range of 1–10 mM. This study demonstrates that TiO2–cellulose hybrid nanocomposite can be a potential candidate for an inexpensive, flexible and disposable glucose biosensor.  相似文献   

8.
Crystalline ceria (CeO2) nanoparticles have been successfully synthesized by a microwave-assisted solution method. Polyaniline (PANI)/cerium dioxide (CeO2) nanocomposite was synthesized by in situ polymerization of aniline in the presence of CeO2 nanoparticles. Characterization of CeO2 and PANI/CeO2 nanomaterials are carried out using various studies such as powder X-ray diffraction, infrared spectral and UV–Vis absorption spectral analyses, scanning electron microscopic and high-resolution transmission electron microscopic (HRTEM) studies and thermal analysis. The HRTEM of the images indicate that the CeO2 nanoparticles were embedded in the PANI matrix forming the core–shell structure.  相似文献   

9.
Nanocomposites consisting of self-assembled polyaniline (PANI) nanostructures and titania nanotubes (TiO2-NT) were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous dispersion of TiO2-NT (outer diameter ~10 nm), without added acid. The influence of initial mole ratio of aniline to TiO2 (80, 20, and 5) on the morphology, electrical conductivity, molecular structure, crystallinity, and magnetic properties of synthesized PANI/TiO2 nanocomposites was studied. Transmission electron microscopy, Raman spectroscopy, and X-ray powder diffraction proved that the shape and structure of TiO2-NT in the final nanocomposites were preserved. The shape of PANI nanostructures formed in the nanocomposites was influenced by the initial aniline/TiO2-NT mole ratio. Nanotubes and nanorods are predominant PANI nanostructures in the nanocomposite prepared with the highest aniline/TiO2 mol ratio of 80. The decrease of aniline/TiO2 molar ratio induced more pronounced formation of nanorod network. The electrical conductivity of PANI/TiO2 nanocomposites was in the range (1.3–2.4) × 10?3 S cm?1. The nanocomposites exhibit weak ferromagnetic behavior. Approximately order of magnitude lower values of coercive field and remanent magnetization were obtained for nanocomposite samples in comparison to pure PANI.  相似文献   

10.
This study discusses the possibility of in situ generation of Ag nanoparticles on polyester fabric by photoreduction of Ag+ ions with deposited TiO2 nanoparticles in the presence of amino acid alanine and methyl alcohol. The presence of TiO2/Ag nanoparticles on the polyester fiber surface was confirmed by XRD, XPS, and SEM analyses. Such nanocomposite textile material provides excellent antimicrobial activity against Gram-negative bacterium E. coli, Gram-positive bacterium S. aureus, and fungus C. albicans. Maximum microbial reduction was preserved even after ten washing cycles. In spite of satisfactory laundering durability, the release of silver occurred during washing. The leaching of silver was also present when the fabrics were exposed to artificial sweat at pH 5.5 and pH 8.0 for 24 h. In addition to excellent antimicrobial properties, TiO2/Ag nanoparticles imparted maximum UV protection to polyester fabrics.  相似文献   

11.
The polyaniline/Mn0.8Zn0.2Fe2O4(PANI/MZF) nanocomposite was prepared by an in situ polymerization method. The samples were characterized by Fourier transform infrared spectrometer, X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The complex permittivity and complex permeability for the nanocomposites were measured by wave-guide method with vector network analyzer in 2.0–18.0 GHz. The reflection losses (R L ) of the nanocomposites were investigated according to the wave transmission theory. The results showed the maximum reflection loss of the PANI/MZF nanocomposite was about ?20.6 dB at 14.4 GHz with a bandwidth of 5.6 GHz. In conclusion, a wider absorption frequency range could be obtained by adding polyaniline contain in the MZF ferrite. The PANI/MZF nanocomposite is a good microwave shielding and absorbing materials at higher frequency.  相似文献   

12.
A selection of appropriate electrocatalysts with a unique design is a promising solution to promote oxidation and reduction reactions in lithium-oxygen (Li-O2) batteries. Here, an effective integrated design of urchin-like core-shell TiO2/α-MnO2 nanostructure is constructed to develop an efficient catalyst electrode for Li-O2 batteries. For this purpose, TiO2 nanoparticles are biosynthesized by an eco-friendly process using flower extract of Matricaria chamomilla as both reducing and stabilizing agents. Then, MnO2 nanocrystals are grown on the surface of TiO2 nanoparticles under different reaction times to observe their evolution in terms of morphology and crystalline structure of MnO2. The electrochemical behavior of the as-prepared core-shell TiO2/α-MnO2 nanostructures is evaluated in Li-O2 cells. The TiO2/α-MnO2 electrode is exhibited a lower overpotential and higher specific capacity than the bare TiO2 electrode. This could have resulted from the bifunctional catalytic activity of TiO2 and α-MnO2 coupled with urchin-like MnO2 nanostructures. Furthermore, the internal resistance of the cell is recorded using electrochemical impedance spectroscopy technique, and reactions of the Li+ and O2 on the cathode surface are investigated by cyclic voltammetry.  相似文献   

13.
The authors have synthesised a core‐shell Fe3O4@TiO2 nanocomposite consisting of Fe3O4 as a magnetic core, and TiO2 as its external shell. The TiO2 shell is primarily intended for use as a biocompatible and antimicrobial carrier for drug delivery and possible other applications such as wastewater remediation purposes because of its known antibacterial and photocatalytic properties. The magnetic core enables quick and easy concentration and separation of nanoparticles. The magnetite nanoparticles were synthesized by a hydrothermal route using ferric chloride as a single‐source precursor. The magnetite nanoparticles were then coated with titanium dioxide using titanium butoxide as a precursor. The core‐shell Fe3O4@TiO2 nanostructure particles were characterized by XRD, UV spectroscopy, and FT‐IR, TEM, and VSM techniques. The saturation magnetization of Fe3O4 nanoparticles was significantly reduced from 74.2 to 13.7 emu/g after the TiO2 coating. The antibacterial studies of magnetic nanoparticles and the titania‐coated magnetic nanocomposite were carried out against gram+ve, and gram–ve bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Shigella flexneri , Escherichia coli, and Salmonella typhi) using well diffusion technique. The inhibition zone for E. coli (17 mm after 24 h) was higher than the other bacterial strains; nevertheless, both the uncoated and TiO2‐coated magnetite nanocomposites showed admirable antibacterial activity against each of the above bacterial strains.  相似文献   

14.
Poly(2-hydroxyethyl methacrylate) (PHEMA) and magnetic nanoparticle (Fe3O4) hybrid nanocomposite was synthesized by dispersion polymerization in supercritical carbon dioxide (scCO2) using a copolymeric stabilizer, poly[(2-dimethylamino)ethyl methacrylate-co-1H,1H-perfluorooctyl methacrylate] (PDMAEMA-co-PFOMA). Fe3O4 nanoparticles were first surface-modified with a silane coupling agent methacryloxypropyltrimethoxysilane (MPTMS), which provides a reactive CC bond and can copolymerize with 2-hydroxyethyl methacrylate (HEMA). After immobilization of the silane coupling agent, polymer chains were successfully grafted onto the surface of Fe3O4, resulting in the formation of core-shell nanostructure. FE-TEM pictures showed that the nanoparticles were well dispersed in the polymer matrix. The incorporation of Fe3O4 in the nanocomposite was confirmed by FT-IR, XRD and XPS. Thermal stability and magnetic property increase with the increasing amount of Fe3O4 nanoparticles in the composite. This new environmentally benign green synthetic route may offer advantages of easy separation and solvent removal.  相似文献   

15.
Titanium oxide TiO2/epoxy and TiO2 with detonation nano-diamond (DND)/epoxy nanocomposites were prepared by using ultrasonication method. TiO2 and DND particles as reinforcement species and epoxy as matrix were used to produce nanocomposites. The addition of DND particles into TiO2/epoxy composite improved the dielectric and mechanical properties of nanocomposites in significant amount. The dielectric properties of TiO2-DND/epoxy nanocomposite demonstrated increase in permittivity and conductivity after addition of the DND particles. The maximum and minimum reflection losses of TiO2-DND/epoxy nanocomposite for 0.6 and 0.2 wt% DND loading were detected at ?14.5 and ?1.3 dB, respectively. The flexural and tensile strength of TiO2-DND/epoxy nanocomposites with the addition of 0.4 wt% DNDs were enhanced to 220% and 223%, respectively. Additionally, the energy to break and percent break strain were 3.9 J and 3.86, respectively for 0.4 wt% DND loading in TiO2-DND/epoxy nanocomposite. Therefore, the present work findings claim that DND particles are well suitable to enrich the dispersion of TiO2 nanoparticles in epoxy matrix, which develops a strong load transfer interface between the nanoparticles and epoxy matrix and consequently leads to superior properties.  相似文献   

16.
Silver/titanium dioxide (Ag/TiO2) core-shell nanowires were synthesized by direct coating of TiO2 shells on the surface of silver nanowires (AgNWs) through a simple sol-gel process. TEM image and EDX elemental analysis had confirmed the presence of TiO2 coating on the surface of AgNWs. The thickness of titanium dioxide coating was about 10 nm. These Ag/TiO2 core-shell nanowires showed good photocatalytic activities in the decomposition of methylene blue as a model organic dye in aqueous solution under UV light irradiation. Ag/TiO2 core-shell nanowires are potentially useful in photocatalytic applications.  相似文献   

17.
Anatase TiO2 nanocrystal colloids with high dispersion and photocatalytic activity were rapidly synthesized from peroxo-titanium-acid precursor by microwave-assisted hydrothermal method within 30?min at low temperature (120–180?°C). The transmission electron microscopy results indicate that the as-prepared TiO2 have a narrow particle size distribution (25–29?nm) and high dispersion. The crystal structure of all these products are pure anatase phase (XRD, Raman), and they show good crystallinity and large surface area (N2 adsorption–desorption measurements BET). The results of the UV–Visible absorbance and Fourier transform infrared spectra indicate that the surface peroxo group Ti(O2) still remains in TiO2 nanoparticles prepared by microwave-assisted hydrothermal method at 120?°C, and this surface peroxo group can be decomposed effectively by drying at 140?°C. The photocatalytic activity of the as-prepared TiO2 were evaluated by the degradation of reactive brilliant red X-3B, it is found that the as-prepared TiO2 exhibited good photocatalytic performance. Moreover, the existence of surface peroxo group greatly suppressed the photocatalytic activity of the TiO2 nanoparticles.  相似文献   

18.
In this paper, we present a convenient and universal strategy to sequentially assemble titania (TiO2) nanorods and polyaniline (PANI) nanoparticles on the Si wafers through hydrothermal synthesis and chemical oxidation. On the one hand, the composite coatings (PANI/TiO2/Si) with hierarchical structures reduced the reflectivity to less than 5 % at the wavelengths from 200 to 2500 nm, namely increasing the absorption efficiency of incident light. On the other hand, the double P–N heterojunctions that the composite coatings developed could suppress the recombination of photogenerated carriers, namely enhancing utilization efficiency of absorbed light. The photocurrent density of PANI/TiO2/Si was above two times higher than that of TiO2/Si at 1.5 V of positive potentials. The application of such coatings in the photocatalysis area, which are fabricated with this method, is thus straightforward.  相似文献   

19.
A convenient method for synthesizing highly photocatalytic activity PANI/TiO2–Fe3+ nanocomposite was developed. The effect of calcination temperature on the phase composition of TiO2 nanopowder was investigated. It was found that higher temperature could promote the formation of rutile phase. The nanocomposite was characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). The results indicated that the nanohybrid was composed of TiO2, Fe3+ and PANI. The photocatalytic property of the nanocomposite was evaluated by the degradation of methyl orange. In the presence of this catalyst, the degradation rate of methyl orange of 95.2% and 70.3% could be obtained under the UV and sunlight irradiation within 30 min, respectively. The apparent rate constant was 5.64 × 10−2 which is better than that of the Degussa P25.  相似文献   

20.
Epoxy resin/titanium dioxide (epoxy/TiO2) nanocomposites were obtained by incorporation of TiO2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO2 nanocomposites was reduced with increasing hydrophobic part chain length of gallate ligand. Dielectric constant of examined nanocomposites was influenced by gallate used for the modification of TiO2 nanoparticles. The nanocomposites have better anticorrosive properties than pure epoxy resin, because the surface modified TiO2 nanoparticles react as oxygen scavengers, which inhibit steel corrosion by cathodic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号