首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abutments of integral bridges are traditionally supported on a single row of steel-H-piles that are flexible and that are able to accommodate lateral deflections well. In Hawaii, steel-H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel-H-piles in scour-susceptible soils has led to a preference for the use of drilled shaft foundations. A drilled shaft-supported integral abutment bridge was monitored from foundation installation to in-service behavior. Strain gauge data indicate that drilled shaft foundations worked well for this integral bridge. After 45 months, the drilled shafts appear to remain uncracked. However, inclinometer readings provide a conflicting viewpoint. Full passive earth pressures never developed behind the abutments as a result of temperature loading because thermal movements were small and the long term movements were dominated by concrete creep and shrinkage of the superstructure that pulled the abutments towards the stream. In the stream, hydrodynamic loading during the wet season had a greater effect on the abutment movements than seasonal temperature cycling. After becoming integral, the upright members of the longitudinal bridge frame were not vertical because the excavation and backfilling process caused deep seated movements of the underlying clay resulting in the drilled shafts bellying out towards the stream. This indicates the importance and need for staged construction analysis in design of integral bridges in highly plastic clays. Also, the drilled shaft axial loads from strain gauges are larger than expected.  相似文献   

2.
The majority of integral abutment bridges (IABs) in the United States are supported on steel H-piles to provide the flexibility necessary to minimize the attraction of large lateral loads to the foundation and abutment. In Hawaii, steel H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel H-piles in scour-susceptible soils has led to a preference for the use of concrete deep foundations. A drilled shaft-supported IAB was instrumented to study its behavior during and after construction over a 45-month period. This same IAB was studied using the finite-element method (FEM) in both two- (2D) and three dimensional (3D). The 3D FEM yields larger overall pile curvature and moments than 2D because in 3D, the high plasticity soil is able to displace in between the drilled shafts thereby “dragging” the shafts to a more highly curved profile while soil flow is restricted by plane strain beam elements in 2D. Measured drilled shaft axial loads were higher than the FEM values mainly due to differences between the assumed and actual axial stiffness and to a lesser extent on concrete creep in the drilled shafts and uneven distribution of loads among drilled shafts. Numerical simulations of thermal and stream loadings were also performed on this IAB.  相似文献   

3.
A minor slide occurred in the downstream face of an earth dam. Initial observations and limited optical survey data suggested the failure was shallow, but continued measurements from inclinometers in the embankment and survey monuments, as well as visual observations of deformation patterns, revealed a more extensive and severe failure located in the underlying weathered claystone foundation. Deep inclinometers were installed, and inclinometer readings indicated that approximately 1 cm per day of movement was occurring along a very discrete zone in the foundation. Horizontal survey measurements confirmed this displacement, and an emergency soil buttress was constructed at the toe of the dam to reduce movement. The residual strength along the slip surface was estimated by back analysis of the sliding block, assuming a safety factor of 1.0 and incorporating end restraint to assess the lower-bound residual strength. The remediation scheme included installation of an internal drainage system and a soil buttress. Postconstruction monitoring shows that the dam is continuing to move at a decreasing rate and is apparently approaching static equilibrium.  相似文献   

4.
The load-settlement behavior of rock-socketed drilled shafts under axial loading is investigated by a load-transfer approach. Special attention is given to the shear load-transfer function and an analytical method for estimating load-transfer characteristics of rock-socketed drilled shafts. A nonlinear triple curve is employed to determine the shear load-transfer function of rock-socketed drilled shafts based on the constant normal stiffness direct shear tests and the Hoek-Brown failure criterion. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it is found that the proposed methodology in the present study is in good agreement with the general trend observed by in situ measurements and, thus, represents a significant improvement in the prediction of drilled shaft shear behavior.  相似文献   

5.
Lateral loads are often the primary forces that act on drilled shafts when they support retaining walls, bridge piers, or building foundations. The construction of drilled shafts often inadvertently introduces flaws that are not always detectable with well-performed nondestructive evaluation (NDE) techniques. The effect of such undetectable minor flaws on the lateral-load performance of drilled shafts needs to be assessed and subsequently considered in the design. This paper summarizes a field study that consisted of NDE of six, full-scale drilled shafts with preinstalled voids and lateral-load tests that were performed on the six test shafts. Results from the field study indicated that undetectable (by NDE) void flaws occupying areas of up to 15% of the cross-sectional area of the drilled shaft could reduce free-head shear capacity up to 16%. A subsequent numerical analysis was performed to filter out all variables, other than void flaws, that could affect the lateral-load deformation of drilled shafts. Numerical analysis results validated the field tests measurements. A parametric study of variables affecting the load-deformation behavior of drilled shafts suggests that a reduction in moment capacity of up to 27% is possible with undetected voids present in the shafts that were tested.  相似文献   

6.
This paper presents a single case history of a drilled shaft constructed in the Atlantic Coastal Plain deposits for a bridge foundation that was subjected to axial loading. The predicted nominal axial capacity is estimated based on state of practice empirically derived methods specified in the current AASHTO LRFD Bridge Design Specifications. Predictions are compared to observed soil resistance derived from a static load test conducted on a full-size instrumented test shaft using the Osterberg Cell method. The results suggest that the AASHTO specified prediction methods should be applied cautiously for drilled shafts in the Atlantic Coastal Plain, incorporating an appropriate in situ testing program for evaluating soil design parameters, considering variations from the specific geologic environment and construction methodology used to develop the specified prediction methods, accounting for the load-deformation behavior of the shaft, and providing for instrumented static load testing to measure the actual behavior of the drilled shafts.  相似文献   

7.
Earth pressure cells, tiltmeters, strain gauges, inclinometer casings, and survey reflectors were installed during construction of a reinforced concrete cantilever retaining wall. A data acquisition system with remote access monitored some 60 sensors on a continual basis. Analyses of the data indicated development of the active condition after translation of about 0.1% of the backfill height. The wall rotated into the backfill as a rigid body, but the top of the stem deflected away from the backfill, approximately equal in magnitude and opposite in direction to the displacement from rigid body rotation. Loading on the wall back-calculated from strain gauge readings was consistent with active earth pressure. The maximum lateral force, about the same as the design value, occurred during compaction of the backfill. Observations that differed from standard assumptions included the passive earth pressure in front of the shear key being less than 10% of the design value and vertical stress below the heel being greater than the toe. Compaction-induced lateral stresses on the stem were sometimes twice the vertical stress.  相似文献   

8.
In this paper, a nonlinear continuum method is developed to predict the load-displacement response of drilled shafts under lateral loading. The method can consider drilled shafts in a continuum consisting of a soil layer overlying a rock mass layer. The deformation modulus of the soil is assumed to vary linearly with depth, and the deformation modulus of the rock mass is assumed to vary linearly with depth and then to stay constant below the shaft tip. The effect of soil and∕or rock mass yielding on the behavior of shafts is considered by assuming that the soil and∕or rock mass behaves linearly elastically at small strain levels and yields when the soil and∕or rock mass reaction force p (force∕length) exceeds the ultimate resistance pult (force∕length). For the calculation of the ultimate resistance pult of the soil, methods that are available in the literature are used. To calculate the ultimate resistance pult of the rock mass, a method based on the Hoek-Brown strength criterion is proposed. The proposed method is verified by comparing its results with available elastic solutions and field test data, and it is finally applied in the design of a bridge foundation in Massachusetts.  相似文献   

9.
Instruments are installed during the construction of urban excavations to monitor ground response at discrete locations to various construction activities, to verify design assumptions and to effectively apply the observational approach. Inverse analysis approaches are often used to develop improved soil models suitable for representing soil response during excavation from these measurements. We propose that through the integration of inverse analysis and instrument measurements, it is possible to provide information on excavation performance at locations where no instrumentation is available. Therefore, this study examines the relationship between various instruments typically used on an excavation project and the quality of information that can be extracted for excavation modeling. A synthetically generated set of instrument measurements that include inclinometers, surface settlement points, extensometers, heave gauges, piezometers, and strain gauges, using an idealized soil profile are initially used. The analyses show that in addition to the measurements of lateral wall deflections and surface settlement, inclinometers placed some distance behind the wall and measured forces in the struts significantly improve the quality of the extracted soil behavior. These findings are further demonstrated with a well instrumented deep excavation case study in Taipei. The inclinometers at the wall and at farther distance from the wall are used to extract the soil behavior. The extracted soil model used in a numerical analysis provides a good prediction of excavation behavior elsewhere around the excavation including surface settlements.  相似文献   

10.
Drilled shafts socketed in rock mass have been used frequently as a foundation system to support both vertical and lateral loads. Traditionally, the lateral interaction between the drilled shaft and the surrounding rock medium has been characterized by means of nonlinear p-y curves; however, there is a lack of well verified p-y criterion for rock mass. In this paper, a hyperbolic p-y criterion is developed based on both theoretical derivations and numerical (finite element) parametric analysis results. The methods for determining pertinent rock parameters needed for constructing the proposed p-y curves are presented in the paper. Two full-scale lateral load tests on large diameter, fully instrumented drilled shafts socketed in rock conducted by the writers, together with additional four load test results reported by Gabr et al. were used to validate the applicability of the proposed hyperbolic p-y curves for rock mass. The comparisons between the computed shaft responses (both deflections and bending moments) and the actual measured responses are considered acceptable.  相似文献   

11.
This study presents an experimental program to investigate the shear capacity of precast reinforced concrete box culverts. Each culvert was subjected to monotonically increasing load through a 254?mm×508?mm (10?in.×20?in.) load plate in order to simulate the HS20 truckload per AASHTO 2005. Instrumentation included strain gauges, high-resolution laser deflection sensor, and automated data acquisition. Four tests were conducted on 1.22?m×1.22?m×1.22?m (4?ft×4?ft×4?ft) box culverts. The location of the load plate was varied to identify the position, which introduces the maximum shear stresses. Laser sensor data and dial gauge readings were recorded to measure the deflection profile of the box culvert. Strain gauges were placed on the steel reinforcement to measure axial strain at locations of maximum positive and negative bending moments. The test results include reporting the loads at which each crack initiated and propagated. The displacement profile of the top slab from the laser instrumentation output along with the load versus maximum deflection for each culvert is also reported.  相似文献   

12.
This paper presents a numerical investigation of the effect of a verification core hole on the point bearing capacity of drilled shafts installed in clay shales. The verification core extracted at the shaft tip may reduce the point bearing capacity of drilled shafts as a result of degradation of clay shales and imperfect core hole infill. Finite-element analyses were conducted using the Mohr-Coulomb model with total stress material parameters estimated from laboratory tests. A series of load-displacement curves was calculated for 1 cycle of air drying and wetting; different drying durations and different core hole conditions were considered; and the point bearing capacity was determined at 3 and 5% shaft diameter displacements. The numerical analyses indicate that the point bearing capacity of drilled shafts with a verification core hole does not decrease for most cases, and the maximum reduction merely reaches 5%. Recommendations are made to reduce the effect of the verification core extracted at the shaft bottom during construction.  相似文献   

13.
Large vertical (axial) and lateral loads often act on the heads of drilled shafts in jointed rock. In current design practice, the p-y curve method used in design of laterally loaded drilled shafts in soil is often also used for shafts in jointed rock. The p-y curve method treats the soil as a continuum, which is not appropriate in jointed rock, particularly when failure occurs due to sliding on joints. A new discontinuum model was developed to determine the lateral load capacity of drilled shafts or piers in a jointed rock mass with two and three joint sets. It consists two parts: a kinematic and a kinetic analysis. In the kinematic analysis, Goodman and Shi’s block theory is expanded to analyze the removability of a combination of blocks laterally loaded by a pier. Based on the expanded theory, a method was developed to select removable combinations of blocks using easily constructed two-dimensional diagrams. In the kinetic analysis, each kinematically selected removable combination of blocks is examined with the limit equilibrium approach to determine the ultimate lateral load capacity. Although the procedure is similar to slope stability analysis, it is more complicated with the addition of a lateral force and the vertical load exerted by the pier. Simple analytical relations were developed to solve for the ultimate lateral load capacity.  相似文献   

14.
The impulse response test is a nondestructive evaluation technique commonly used for quality control of driven concrete piles and drilled shafts where the pile heads are accessible. When evaluating existing foundations, the presence of a pile cap or other structure makes the pile heads inaccessible and introduces uncertainties in the interpretation of impulse response results. A test section was constructed at the National Geotechnical Experimentation Site (NGES) at Northwestern University to examine the applicability of nondestructive testing methods in evaluating deep foundations under inaccessible-head conditions. This paper focuses on the results of impulse response tests conducted atop the three pile caps at the NGES. Based on field experimentation and numerical simulations, a frequency was determined below which the impulse response test could be used for inaccessible-head conditions. This cutoff frequency primarily depends upon the geometry of the pile cap and pile. A case study is presented that describes impulse response tests obtained on a number of drilled shafts both after the shaft was constructed and after grade beams and walls were built. The results of these tests also follow the trends observed in the NGES tests related to cutoff frequency.  相似文献   

15.
Modern methods for designing drilled shafts in soft rock require knowledge of the compressive strength and modulus of the rock. However, rock jointing at many sites prohibits the recovery of samples of sufficient length and integrity to test rock cores in either unconfined or triaxial compression tests. Since rational design procedures usually require values of compressive strength, surrogate methods must be employed to estimate the compressive strength of the rock. The surrogate methods considered in this study was Texas cone penetrometer tests, and performed at several sites in North Central Texas. In order to develop the relationships between Texas cone penetrations and side and base resistances of rock socketed drilled shafts, three field load tests were conducted. Based on the field study and literature reviews, a relationship between Texas cone penetration tests and axial resistances of rock socketed drilled shafts was proposed.  相似文献   

16.
This paper is a critical evaluation of the interpretation criteria of drilled shafts under axial compression loading. A wide variety of load test data are used for analysis, and these data are divided into drained and undrained databases. The interpretation criteria are examined from these load test results to establish a consistent compression interpretation criterion. Among these criteria, the range of each interpretation method presents approximately the same trend for both drained and undrained conditions. The statistical results show that the smaller the compression displacement, the higher the coefficient of variation. Moreover, the undrained load test results reveal less variability than the drained results. The load-displacement curve of a drained loading also demonstrates more ductility than that for undrained loading. Based on these analyses, the relative merits and interrelationships of these criteria are established, and specific design recommendations for the interpretation of compression drilled shaft load test, in terms of both capacity and displacement, are given.  相似文献   

17.
PURPOSE: To assess whether the contact lens to cornea-bearing relationship, as determined from the fluorescein pattern, can be predicted from videokeratography. METHODS: Nineteen non-rigid gas permeable (RGP) lens wearers were each tested for fluorescein patterns with a series of seven RGP contact lenses of different base curves, and compared to a theoretical estimate of the fitting relationship from videokeratography. The experimentally determined alignment lens was then compared to the theoretical alignment (TA) value as determined from the central curvature and eccentricity. RESULTS: The mean difference in lens choice between the TA and experimental alignment (EA) values was -0.01 +/- 0.04 mm and between the simulated keratometric (KA) readings and the EA choice was 0.11 +/- 0.05 mm. CONCLUSION: A knowledge of the eccentricity value from videokeratography allowed a better prediction of the base curve to cornea relationship than was provided by only a central corneal measurement.  相似文献   

18.
Deflection of a bridge span under designed loads is an important parameter for bridge safety evaluation. However, it is inconvenient to obtain the bridge deflections directly. For bridges over rivers, railways, or highways, a direct measurement method is impractical. A promising bridge deflection measurement method (inclinometer method) is presented in this paper. It offers a simple, practical and inexpensive method of measuring static and dynamic deflections of bridge spans under loads, even for bridge spans that traverse great heights. Hundreds of experiments and practical tests on simple and continuous bridges, utilizing dynamic and static loads, under various vehicle speeds, show that the method has very high precision, which provides an authentic basis for new-built bridge acceptance and old bridge safety evaluation. The method does not need fixed observation positions as other deflection measurement methods because the inclinometers are installed on the bridge directly, which increases measurement efficiency greatly. These features indicate that as a potential method of measuring bridge deflection, inclinometers have significant engineering application value and a promising future.  相似文献   

19.
Simple equations are proposed for estimating storage coefficient and transmissivity of an aquifer from drawdowns in large- diameter wells. The proposed method requires determination of the peak and time to peak of a unimodal curve. Using these values and utilizing the provided set of equations, the aquifer parameters are estimated through an iterative procedure. The proposed method is void of subjectivity involved in the previously proposed curve matching methods. Also, the new method can be used when the conventional curve matching methods cannot be applied to estimate the aquifer parameters. The new method can be used to estimate the aquifer parameters from the drawdown data observed only up to a time so that the peak could be determined.  相似文献   

20.
Determining the deformation response of geosynthetics under load is important in developing an in-depth understanding of the engineering behavior of these materials. Current strain determination methods employed as part of tensile tests mostly assume that the strain is uniform throughout the specimen and, hence, are incapable of determining local strains. Geosynthetics have occasionally been instrumented with strain gauges and extensometers; however, these direct contact methods have limitations in fully defining strain distributions in a test specimen. Recent technological advancements in image analysis offer great potential for a more accurate and noncontact method of determining strains. An image-based particle tracking method was used to define the strain distribution in various geosynthetics during wide-width tensile testing. The method used a block-based matching algorithm functioning under LABVIEW. The measured gross strain values were compared to those determined from strain gauges and extensometers. The strain values determined by these methods were comparable to the image-based ones, and the absolute value of the difference was less than 10% for the geosynthetics tested. Furthermore, the image-based analysis was effective in also determining the local strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号