首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fulvic acids are one of the largest classes of dissolved organic matter, but they are poorly defined and of unclear origin. Three fulvic acid isolates of different origin were analyzed by size-exclusion chromatography coupled to electrospray ionization-Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry, and molecular formulas for 700-1900 species in these isolates were derived. All three isolates show the same pattern in the elemental composition of their molecules and a large congruence in the molecular sets. It is proposed that the elemental and structural regularity of fulvic acid molecules does not indicate one common precursor material and formation process, but that this regularity is due to both the strong reworking of source materials in the environment and the valency of the three elements (C, H, O) from which most fulvic acid molecules are formed. Potential molecular formulas of fulvic acids were predicted for a mass range of 60 amu based on a few presumptions. A good agreement was found between the predicted and the detected molecular formulas, and it is concluded that (poly-)carboxylic acids with very limited number of hydroxy groups are the major compound class in fulvic acid isolates. It appears that fulvic acids are metastable molecules that characterize a state of transition of diverse precursor compounds during their oxidation.  相似文献   

2.
Partition coefficients for the binding affinities of atrazine to 16 different humic materials were determined by the ultrafiltration HPLC technique. Sources included humic acids (HA), fulvic acids (FA), and combined humic and fulvic fractions (HF) from soil, peat, and coal humic acid. Each of the humic materials was characterized by elemental composition, molecular weight, and composition of main structural fragments determined by 13C solution-state NMR. The magnitude of K(OC) values varied from 87 to 575 L/kg of C, demonstrating relatively low binding affinity of humic substances (HS) for atrazine. On the basis of the measured K(OC) values, the humic materials can be arranged in the following order: coal HA approximately = gray wooded soil HA > chernozemic soil HA and HF > sod-podzolic soil HA approximately = peat HF > sod-podzolic soil FA > peat dissolved organic matter. The magnitude of the K(OC) values correlated strongly with the percentage of aromatic carbon in HS samples (r = 0.91). The hydrophobic binding was hypothesized as the key interaction underlying the binding of atrazine to HS.  相似文献   

3.
Size exclusion chromatography (SEC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) was used to analyze the elemental composition and structure of low-molecular-weight fulvic acid molecules. It is shown that the set of hundreds of individual molecules form a homogeneous and structurally unique class of compounds that can be clearly differentiated from any other class of biogenic matter investigated to date. The molecular composition of low-molecular-weight fulvic acids in isolates of very different origin (surface water, groundwater, peat) is virtually indistinguishable. Significant and characteristic differences are, however, recognized when qualitative information and quantitative information provided by ESI-Q-TOF-MS are linked to each other. The relative frequency of the various molecules in each mixture can differ significantly, with the peat showing higher intensity of the aromatic and less carboxylated molecules of this set, whereas the aquatic fulvic acids show a strong contribution of the molecules with less aromaticity and a higher carboxylate content. The identity of fulvic acid molecules in isolates of different origin implies that no specific source material is required forfulvic acid formation but that they may be formed from different sources by different oxidative processes.  相似文献   

4.
The molecular complexity of dissolved organic matter (DOM) hinders its characterization. New approaches are thus needed for a better understanding of DOM reactivity and fate in aquatic systems. In this study, high-performance liquid chromatography (HPLC), using size-exclusion separation, was coupled with Fourier transform infrared spectroscopy (FTIR). A solvent-elimination interface was used to deposit DOM fractions onto a germanium disk that were then analyzed by FTIR. Samples included ultrafiltered DOM (UDOM) and fulvic acids from the St. Lawrence Estuary and its tributaries. Results showed significant compositional changes with molecular size and origin, especially in UDOM. Larger fractions of UDOM contained more carbohydrates, amides, aromatics/alkenes and aliphatics, while smaller fractions contained more carboxylate and OH groups. Small marine molecules (500-900 Da) were also enriched in sulfate groups that appeared bound to UDOM. Large marine molecules were the most amide-rich fractions. Fulvic acids were enriched in carboxylate and OH groups, showed little changes in composition, and appeared similar to small terrigenous (riverine) UDOM even in marine water. This work shows that an HPLC-FTIR system is a powerful and complementary tool in the characterization of DOM. The compositional changes observed may explain the reported contrasting reactivity and fate of DOM having different size and origin.  相似文献   

5.
Molecular fractionation of dissolved organic matter with metal salts   总被引:1,自引:0,他引:1  
Coagulation of dissolved organic matter (DOM) by hydrolyzing metals is an important environmental process with particular relevance, e.g., for the cycling of organic matter in metal-rich aquatic systems or the flocculation of organic matter in wastewater treatment plants. Often, a nonremovable fraction of DOM remains in solution even at low DOM/metal ratios. Because coagulation by metals results from interactions with functional groups, we hypothesize that noncoagulating fractions have a distinct molecular composition. To test the hypothesis, we analyzed peat-derived dissolved organic matter remaining in solution after mixing with salts of Ca, Al, and Fe using 15 T Electrospray Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR-MS). Addition of metals resulted in a net removal of DOM. Also a reduction of molecular diversity was observed, as the number of peaks from the ESI-FT-ICR-MS spectra decreased. At DOM/metal ratios of ~9 Ca did not show any preference for distinct molecular fractions, while Fe and Al removed preferentially the most oxidized compounds (O/C ratio >0.4) of the peat leachate. Lowering DOM/metal ratios to ~1 resulted in further removal of less oxidized as well as more aromatic compounds ("black carbon"). Molecular composition in the residual solution after coagulation was more saturated, less polar, and less oxidized compared to the original peat leachate and exhibited a surprising similarity with DOM of marine origin. By identifying more than 9200 molecular formulas we can show that structural properties (saturation and aromaticity) and oxygen content of individual DOM molecules play an important role in coagulation with metals. We conclude that polyvalent cations not only alter the net mobility but also the very molecular composition of DOM in aquatic environments.  相似文献   

6.
Sorption induced fractionation of purified Aldrich humic acid (PAHA) on hematite is studied through the modification of electrospray ionization (ESI) quadrupole time-of-flight (QToF) mass spectra of supernatants from retention experiments. The ESI mass spectra show an increase of the "mean molecular masses" of the molecules that constitutes humic aggregates. The low molecular weight fraction (LMWF; m/z < or = 600 Da) is preferentially sorbed compared to two other fractions. The resolution provided by ESI-QToF mass spectrometer in the low-mass range provided evidence of further fractionation induced by sorption within the LMWF. Among the two latter fractions, the high molecular weight fraction (HMWF; m/z approximately 1700 Da) seems to be more prone to sorption compared to the intermediate molecular weight fraction (IMWF; m/z approximately 900 Da). The IMWF seems to be more hydrophilic as it should be richer in O, N, and alkyl C from the proportion of even mass, and poorer in aromatic structures from mass defect analysis in ESI mass spectra.  相似文献   

7.
Facilitation of cleaning of alumina (A12O3) particles fouled with heat-treated bovine serum albumin (BSA), which contains sulfhydryl groups on the molecule, by gaseous ozone was studied. With increasing temperature of heat treatment, the amount of adsorbed BSA onto A12O3 surfaces increased, whereas the rate of BSA desorption during alkali cleaning decreased markedly, resulting in the larger amounts of BSA remaining on 12O3 surfaces. No significant amounts of BSA were removed from A12O3 surfaces by alkali cleaning alone when treated at temperatures above 120 degrees C. Before alkali cleaning, the heat-treated, BSA-fouled AI2O3 at 150 degrees C were treated with 0.05 to 0.30% (vol/vol) gaseous ozone at room temperature. Ozone pretreatment markedly accelerated the rate of BSA desorption during subsequent alkali cleaning. The effect of ozone pretreatment on BSA removal depended on the concentration of ozone and treatment time and hence on the total amount of ozone supplied. The molecular weight (MW) of desorbed BSA during alkali cleaning without ozone pretreatment coincided with the MW of the native BSA, whereas the MW of desorbed BSA during the combined ozone-alkali cleaning was lower than the MW of the native BSA. This indicated that the heat-treated BSA molecules adsorbed on A12O3 were partially decomposed into some fragments by ozone pretreatment, resulting in the facilitation of the removal of BSA during alkali cleaning.  相似文献   

8.
Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.  相似文献   

9.
为确定河泥中参与莨纱绸涂层形成的有机组分,并明晰莨纱绸生产用河泥与非专用河泥(以杭州下沙河泥为例)的差别,采用碱溶酸析法将生产莨纱绸用的广东佛山顺德、西樵河泥以及杭州下沙河泥分别进行分离与纯化,将莨纱绸生产用河泥涂抹在反复浸/晒薯莨浸出液的染色坯布上并刮下表面涂层粉末,最后借助紫外-可见分光光度计、傅里叶红外光谱仪、X射线光电子能谱仪对所得各组分进行分析。结果表明:河泥中的腐殖酸和富里酸成分参与了莨纱绸涂层的形成;莨纱绸制备用河泥与杭州下沙河泥的腐殖酸和富里酸组分在结构和性质上存在较大差别,莨纱绸制备用河泥腐殖酸和富里酸分子的含氧官能团含量与芳香化程度更高,且其腐殖酸组分具有较强的铁离子结合能力,这些结构特征和特性有助于形成莨纱绸乌黑亮丽且色牢度高的涂层。  相似文献   

10.
Recent studies have examined the potential of ultraviolet (UV, 254 nm) and vacuum ultraviolet (VUV, 185 nm + 254 nm) irradiation as either a pretreatment for a biological process or as a sole treatment for the removal of natural organic matter as dissolved organic carbon from drinking water. To understand the potential of UV and VUV irradiation followed by subsequent biological treatment, treated water was fractionated into four components: very hydrophobic acid (VHA), slightly hydrophobic acid (SHA), hydrophilic charged (CHA), and hydrophilic neutral (NEU). The VHA fraction was found to be very susceptible to both UV and VUV irradiation, and the fragmentation products of the high molecular weight VHA and SHA molecules contributed to the CHA and NEU fractions to form a pool of biodegradable, non-UV-absorbing, low molecular weight moieties. The NEU fraction was the most difficult to remove, as most of the components in this fraction were refractory to both the biological and photo-oxidative processes. Therefore, enhanced removal of the NEU fraction is required to increase the effectiveness and potential of the treatment process.  相似文献   

11.
Natural organic matter (NOM) can affect the performance of water treatment processes, and serves as a main precursor for the formation of disinfection byproduct (DBPs) during chlorination. To minimize such undesirable effects, a better understanding of its structural information and reactivity toward chlorine is necessary. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to study the molecular composition of NOM in source water. More than four thousand NOM components were resolved in the sample. NOM molecules with a low degree of oxidation (low O/C ratio) were found to be more reactive toward chlorine than those with high O/C ratio. Totally, 659 one-chlorine containing products and 348 two-chlorine containing products were detected in the chlorinated sample at a high confidence level. The chlorinated products can be arranged into series, which indicate they were originated from precursor compounds in series related by the replacement of CH(4) against oxygen. Of the 1007 chlorine-containing products observed in this study, only 7 molecular formulas can be found in previous studies, showing the distinct difference from previous studies. This study explored the reactivity of NOM toward chlorine on a molecular level, which was previously explained on the level of whole mixtures or fractions of NOM, and the identified chlorinated products may contribute to our knowledge of the unknown total organic halide (TOX).  相似文献   

12.
Removal of pharmaceuticals during drinking water treatment   总被引:12,自引:0,他引:12  
The elimination of selected pharmaceuticals (bezafibrate, clofibric acid, carbamazepine, diclofenac) during drinking water treatment processes was investigated at lab and pilot scale and in real waterworks. No significant removal of pharmaceuticals was observed in batch experiments with sand under natural aerobic and anoxic conditions, thus indicating low sorption properties and high persistence with nonadapted microorganisms. These results were underscored by the presence of carbamazepine in bank-filtrated water with anaerobic conditions in a waterworks area. Flocculation using iron(III) chloride in lab-scale experiments (Jar test) and investigations in waterworks exhibited no significant elimination of the selected target pharmaceuticals. However, ozonation was in some cases very effective in eliminating these polar compounds. In lab-scale experiments, 0.5 mg/L ozone was shown to reduce the concentrations of diclofenac and carbamazepine by more than 90%, while bezafibrate was eliminated by 50% with a 1.5 mg/L ozone dose. Clofibric acid was stable even at 3 mg/L ozone. Under waterworks conditions, similar removal efficiencies were observed. In addition to ozonation, filtration with granular activated carbon (GAC) was very effective in removing pharmaceuticals. Except for clofibric acid, GAC in pilot-scale experiments and waterworks provided a major elimination of the pharmaceuticals under investigation.  相似文献   

13.
The correlations between formation of melanoidins and the content of α-dicarbonyl compounds and colour formation were studied in Maillard reaction model sucrose solutions at high treating temperatures (130 °C) corresponding to the industrial sucrose processing. Molecular weight distribution was determined by gel permeation chromatography (GPC) and α-dicarbonyls as high reactive intermediates of the Maillard reaction were detected by RP-HPLC and GC/MS. Referring to formation of melanoidins, new knowledge could be gained. The investigations clearly point out, that individual α-dicarbonyls are involved in formation of specific molecular weight fractions. 3-Deoxyhexosulose (3-DH) and methylglyoxal are the important α-dicarbonyl compounds in thermal-treated sucrose solutions. A low molecular weight fraction with a molecular weight range of <5,800 g/mol preferably occurs when 3-DH is formed in high concentrations. The high increase in intensity of a low molecular weight fraction is combined with a strong colour formation. In contrast to 3-DH, methylglyoxal promotes the formation of high molecular weight fractions between 6,600 g/mol and approximately 17,000 g/mol. Furthermore, model solutions with a high intensity of high molecular weight fractions show an early colour formation during the starting period of the reaction. Indeed, this early browning is not as intensive as the colour formation caused by the low molecular weight fraction during the later stage of the browning reaction. Out of this, 3-DH can be regarded as the most important intermediate for an intensive colour formation in sucrose solutions.  相似文献   

14.
Experiments were performed to assess the effects of treating the fulvic acid fractions of background natural organic matter (NOM) by catalyst-induced oxidative coupling reactions. Changes in the molecular characteristics of the fulvic acids and related disinfection byproduct formation potentials of these important NOM constituents were investigated. The coupling reactions were induced by addition of horseradish peroxidase (HRP) and hydrogen peroxide to aqueous solutions of the fulvic acids (FAs) in semicontinuous flow reactors. Subsequent removal of organic matter by ultrafiltration was found to be markedly enhanced for FA solutions subjected to oxidative coupling treatment. Uniform formation condition tests further indicated that the disinfection byproducts formed upon chlorination of FAs treated via induced oxidative coupling were reduced significantly on a unit carbon basis relative to those formed upon chlorination of their untreated counterparts. Spectroscopic examinations revealed thatthe FA molecules were effectively reconfigured in the oxidative coupling reactions. Substantial conversion of aromatic hydroxyl groups into ether-bonded moieties is evident, and a loss of primary amine groups, probably through conversion into secondary or tertiary amines, was also observed. These conversions apparently result in cross-linking of the natural FA moieties to form stable species of larger sizes, thus rendering them more readily removable by ultrafiltration and less reactive with chlorine. The results of the study may be interpreted as indicating that catalytically induced oxidative coupling reactions of the type conducted in this work can be combined with ultrafiltration to provide an effective scheme for removal of disinfection byproduct precursors.  相似文献   

15.
A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations.  相似文献   

16.
螺旋藻多糖提取新工艺的研究   总被引:36,自引:2,他引:36  
提取螺旋藻多糖的传统工艺存在着流程长,操作复杂,有机溶剂消耗大等问题。采用三氯乙酸(TCA)法代替Sevag法去除蛋白质,使改进后的提取工艺中蛋白质去除率增加,多糖损失率降低,流程缩短。通过用DEAE-Speharose和Sephadex-G50柱的分离纯化得到2个多糖组分。经测定,其相对分子质量分别为Mr1=12600,Mr2=16600。组分1的单糖组成:D-葡萄糖、D-甘露糖、D-半乳糖和葡萄糖醛酸;组分2的单糖组成:D-葡萄糖、D-木糖、L-鼠李糖和葡萄糖醛酸。  相似文献   

17.
The impact of hydroxyl radical (*OH) on the molecular weight distribution of natural organic matter (NOM) was investigated. *OH was generated via the photolysis of hydrogen peroxide (H2O2) by ultraviolet (UV) radiation of 254 nm, also known as UV/ H2O2 advanced oxidation (AO). Additionally, the impact of combined membrane and UV/H2O2 treatment on the molecular weight distribution of NOM was studied. High performance size exclusion chromatography (HPSEC) was used to determine the apparent molecular weight (AMW) distribution of chromophoric NOM (CNOM). Prior to AO, 33% of the CNOM in the water had AMW greater than 1400 Da. Meanwhile, lower AMW CNOM made up smaller amounts of the CNOM, with CNOM of AMW less than 450 Da making up 5% of the total. Under the AO conditions typically applied in drinking water treatment applications, NOM was not mineralized but was partially oxidized resulting in significant reduction in aromaticity. *OH preferentially reacted with higher AMW CNOM and the fragmentation of high AMW CNOM led to the formation of smaller AMW CNOM. Ultrafiltration removed all CNOM greater than 1400 Da AMW and a large portion of other high AMW fractions. In the absence of high AMW CNOM, *OH reacted more readily with all AMW fractions leading to a reduction in concentration of most AMW fractions. Whereas *OH reacted nonspecifically with all AMW fractions, the reaction rate between *OH and CNOM was observed to be dependent on molecular size.  相似文献   

18.
Durum wheat glutenin fractions, composed of two low molecular weight proteins DSG-1 and DSG-2 (durum wheat (Triticum durum Desf) sulphurrich glutenin fractions) were extracted from semolina samples using a low concentration of Na tetradecanoate after extracting albumins, globulins and gliadins. DSG proteins have a high? SH plus S? S content. A highly significant correlation was found between the ? SH plus S? S content of this DSG-rich fraction and the cooking quality of pasta (0.63, P <0.01 with firmness and 0.86, P <0.001 with the state of the surface of the cooked pasta) and this seems to be a functional relationship. The use of acetic acid at various molarities showed the presence of high molecular weight glutenin fractions with differing solubility properties. In this respect, differences were found between varieties which are placed in the same group according to the classification of durum wheats based upon the composition of high molecular weight glutenin subunits.  相似文献   

19.
The effect of temperature (5–20C) at 860 ppm (v/v) ozone and different gaseous ozone concentrations above 1,000 ppm on inactivation of E. coli O157:H7 in apple cider was studied. Lag times ranged from 3.5 min at 20C to 6.7 min at 10C before the on-set of E. coli O157:H7 inactivation. D-values ranged from 0.6 to 1.5 min at 20C and 5C, respectively. After ozone treatment of cider for 14 min, dissipation of ozone from cider was slow, decreasing to about 5 mg/L after 2 h at 5C. At high gaseous ozone concentration, log time was shortest and D-value lowest. There was a critical concentration of dissolved ozone of about 5–6 mg/L at 20C, before the on-set of E. coli O157:H7 inactivation in the cider. Total processing times, based on lag time plus 5D, ranged from about 4 to 14 min depending on temperature and ozone concentration. Overall, inactivation of E. coli O157:H7 by ozone was fast enough to allow practical applications in cider production, and it should be considered as an alternative to thermal pasteurization.  相似文献   

20.
Dissolved organic matter leached from decomposing organic matter is important in the leaching of nutrients from the root zone of ecosystems, eluviation of metals, and transport of hydrophobic pollutants. The objective of this study was to compare microbial mineralization rates in intact soil cores of various fractions of water-soluble dissolved organic matter. Uniformly 14C-labeled Populus fremontii leaf litter that had decomposed for 1 year was extracted in water and this extract was fractionated into phenolic, humic acid, fulvic acid, hydrophilic acid, and hydrophilic neutral fractions. Fulvic acid comprised 42.1% of C in dissolved organic carbon (DOC) extracted from the litter. These fractions were added to intact cores of soil or sand, and respired 14CO2 was collected. The percentage of labeled substrate C mineralized in soil at the end of 1 year was, in order from least to greatest, hydrophilic acid (30.5), fulvic acid (33.8), humic acid (39.0), whole, unfractionated DOC (43.5), unseparated hydrophilic acid and neutral (44.7), phenolic (63.3), glucose (66.4), and hydrophilic neutral (70.2). In acid-washed nutrient-amended sand that was inoculated with soil microbes, mineralization rates of fulvic acid and glucose were lower. The fractionation appeared to separate the DOC into components with widely different rates of mineralization. Results also supported the ideas that the dissolved humic substance and hydrophilic acid fractions are inherently difficult for microbes to mineralize, and this property can contribute to movement of refractory C in soil and into aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号