首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

2.
Many experimental studies have been performed to evaluate the behavior of noncorroding glass fiber reinforced polymer (GFRP) rebars in reinforced concrete (RC) flexural members. Relatively few studies have focused on the behavior of bridge deck overhangs in the event of a barrier wall impact, which subjects this region to a combination of flexure, shear, and axial tension. The objective of this investigation is to evaluate deck overhangs under these forces. Three bridge deck reinforcing schemes were considered in the study: all epoxy-coated steel (ECS), all GFRP, and hybrid made up of a top mat of GFRP rebars and a bottom mat of ECS rebars. Laboratory testing of nine RC specimens was performed. Results showed that all three reinforcing schemes meet the AASHTO requirements.  相似文献   

3.
The Val-Alain Bridge, located in the Municipality of Val-Alain on Highway 20 East, crosses over Henri River in Québec, Canada. The bridge is a slab-on-girder type with a skew angle of 20° over a single span of 49.89?m and a total width of 12.57?m. The bridge has four simply supported steel girders spaced at 3,145?mm. The deck slab is a 225-mm-thick concrete slab, with semi-integral abutments, continuous over the steel girders with an overhang of 1,570?mm on each side. The concrete deck slab and the bridge barriers were reinforced with glass fiber reinforced polymer (GFRP) reinforcing bars utilizing high-performance concrete. The Val-Alain Bridge is the Canada’s first concrete bridge deck totally reinforced with GFRP reinforcing bars. Using such nonmetallic reinforcement in combination with high-performance concrete leads to an expected service life of more than 75?years. The bridge is well instrumented with electrical resistance strain gauges and fiber-optic sensors at critical locations to record internal strain data. Also, the bridge was tested for service performance using calibrated truckloads. Design concepts, construction details, and results of the first series of live load field tests are presented.  相似文献   

4.
Recently, there has been a rapid increase in using noncorrosive fiber-reinforced polymers (FRP) reinforcing bars as alternative reinforcement for bridge deck slabs, especially those in harsh environments. A new two-span girder type bridge, Cookshire-Eaton Bridge (located in the municipality of Cookshire, Quebec, Canada), was constructed with a total length of 52.08 m over two equal spans. The deck was a 200-mm-thick concrete slab continuous over four spans of 2.70 m between girders with an overhang of 1.40 m on each side. One full span of the bridge was totally reinforced using glass fiber-reinforced polymer (GFRP) bars, while the other span was reinforced with galvanized steel bars. The bridge deck was well instrumented at critical locations for internal temperature and strain data collection using fiber optic sensors. The bridge was tested for service performance using calibrated truckloads as specified by the Canadian Highway Bridge Design Code. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very competitive performance in comparison to steel.  相似文献   

5.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

6.
Stress-laminated timber bridge decks have gained increasing popularity in the United States in recent years. As with all wood exposed to the environment, wood for these decks must be treated with preservatives. There has been reluctance to build chromated-copper-arsenate (CCA) –treated wood bridges due to concerns about dimensional stability. Because no research has been undertaken to investigate the use of CCA-treated southern pine in stress-laminated bridge decks, a good resource for economic rural bridges has remained untapped. The objective of this study was to evaluate the performance of various wood preservatives on stress-laminated southern pine bridge decks. A total of nine decks with seven different preservatives were built and exposed to the environment for more than 2 years. Force levels in prestressing bars and wood moisture contents from each deck were continuously monitored. It was found that the short-term variations in the bar stress levels are less for decks with oil-type preservatives, as compared to CCA preservatives. The long-term performance for decks with both preservative types was found to be similar. The anchorage effect on the deck performance was found to be negligible.  相似文献   

7.
In an effort to assess the constructability and performance of bridges with fiber-reinforced polymer (FRP) composite decks, the short-term and long-term responses of a 207 m, five-span bridge retrofitted with four different FRP panel systems were monitored. The overall aspects of the panel systems, connection details, and construction techniques are presented prior to presentation of the observed and measured responses. Key design parameters (impact factors, girder distribution factors, and level of composite action) for FRP and reinforced concrete decks are evaluated. This paper demonstrates that FRP replacement decks are a viable alternative to reinforced concrete decks and identifies the differences in performances of various FRP deck systems. Two of the FRP panel systems were found to perform considerably better than the other deck systems. Issues that may reduce the service life of FRP deck systems are presented and discussed.  相似文献   

8.
This technical note presents numerical results to predict the corrosion initiation time of reinforced concrete bridge decks using measured surface chloride accumulation. Based on actual core measurements, the surface chloride, which is mainly derived from the deicing salts used during winter maintenance operations, is assumed to increase linearly over a period of time and then remains constant afterward. The chloride ions penetrate the concrete by diffusion and corrosion is initiated when the concentration of the ions around the reinforcement steel reaches a critical value needed to break the passive film surrounding the steel. The corrosion initiation time is computed for different values of the diffusion coefficient and the concrete cover. Such results are useful for scheduling bridge deck maintenance and rehabilitation programs.  相似文献   

9.
The sandwich plate system (SPS) is a relatively new bridge deck system that consists of steel face plates bonded to a rigid polyurethane core. The decks are thin, lightweight, and modular in design and can be tailored to numerous applications. This system provides an excellent alternative for the rapid construction and rehabilitation of bridge decks. With any new system, there exists some uncertainty in the design procedures as a result of the limited population for comparison. This paper presents the results of a finite-element parametric investigation of the lateral load distribution characteristics of SPS bridges. The parametric study primarily focuses on the influence of deck thickness on distribution behavior as compared to conventional reinforced concrete decks. Results from the study demonstrate that the inherent flexibility of a thin SPS deck yields larger distribution factors (up to 20%) than a typical reinforced concrete deck, but these distribution factors can still be conservatively estimated with current AASHTO LRFD methods. Additional comparisons indicate that the distribution behavior of SPS bridges can also be estimated with the equations proposed by the NCHRP 12-62 project.  相似文献   

10.
Studies were conducted to understand the galvanic interactions between CFRP and steel in chloride-contaminated concrete. CFRP-pultruded rod samples (6 mm in diameter), #3 deformed plain rebar (PR, uncoated), and #4 epoxy-coated reinforcing (ECR) steel bars were tested. After 350 days, potential measurements of CFRP and steel samples in chloride-contaminated concrete were ?200 and ?600 mV (versus CSE), respectively. These results confirm that chloride contamination in concrete could allow galvanic corrosion between CFRP and steel. The measured galvanic current densities were up to 0.7 and 100 μA/m2 for the CFRP-PR and CFRP-ECR couples, respectively, raising concerns about the degradation of both CFRP and steel. The results showed that PR steel was unaffected, as the corrosion rates estimated before and after the coupling with CFRP were similar. In contrast, coupling CFRP and ECR steel showed an increase of 10 times of the estimated corrosion rate, suggesting that galvanic interaction might affect the ECR steel.  相似文献   

11.
Filament-Wound Glass Fiber Reinforced Polymer Bridge Deck Modules   总被引:1,自引:0,他引:1  
The demand for the development of efficient and durable bridge decks is a priority for most of the highway authorities worldwide. This paper summarizes the results of an experimental program designed to study the behavior of an innovative glass fiber reinforced polymer (GFRP) bridge deck recently patented in Canada. The deck consisted of a number of triangular filament wound tubes bonded with epoxy resin. GFRP plates were adhered to the top and bottom of the tubes to create one modular unit. The experimental program, described in this paper, discusses the evolution of two generations of the bridge deck. In the first generation, three prototype specimens were tested to failure, and their performance was analyzed. Based on the behavior observed, a second generation of bridge decks was fabricated and tested. The performance was evaluated based on load capacity, mode of failure, deflection at service load level, and strain behavior. All decks tested exceeded the requirements to support HS30 design truck loads specified by AASHTO with a margin of safety. This paper also presents an analytical model, based on Classical Laminate Theory to predict the load-deflection behavior of the FRP decks up to service load level. In all cases the model predicted the deck behavior very well.  相似文献   

12.
杨才福  陈雪慧  王瑞珍 《钢铁》2017,52(10):94-103
 深入调查了中国HRB400/400E和HRB500/500E高强度热轧钢筋的质量现状。从不同地区的钢筋生产厂和使用场所取样分析了高强度热轧钢筋成分、宏观金相、微观组织和截面硬度。按照钢筋化学成分范围,目前中国高强度热轧钢筋可归为4类,即含钒钢筋、低钒钢筋(<0.02%钒)、20MnSi钢筋和C-Mn钢筋。宏观金相和微观组织观察结果表明,只有含钒钢筋能完全满足热轧钢筋的组织要求,其他3类钢筋截面基圆外围均出现非铁素体-珠光体组织的表面硬化层。基于高强度热轧钢筋的质量分析结果,提出了热轧带肋钢筋国家标准GB1499.2—2007的修订建议。  相似文献   

13.
This paper presents the development of a project-level decision support tool for ranking maintenance scenarios for concrete bridge decks deteriorated as a result of chloride-induced corrosion. The approach is based on a mechanistic deterioration model and a probabilistic life-cycle cost analysis. The analysis includes agency and user costs of alternative maintenance scenarios and considers uncertainties in the agency cost and the corrosion rate in the deterioration model. The tool presented in this paper can be used to find the optimal condition index of a given bridge deck that minimizes life-cycle cost. Based on the results obtained on three existing bridge decks, it is shown that the total life-cycle cost (user cost plus agency cost) is a nonlinear function of the maximum tolerable condition of the deck, Sm, and that for a practical range of Sm, the relationship between total life-cycle cost and Sm is convex.  相似文献   

14.
The lack of safety of deck slabs in bridges generally causes frequent repair and strengthening. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of a realistic and accurate assessment system for bridge decks. The purpose of the present paper is therefore to develop a realistic assessment system which can estimate reasonably the safety, as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the traffic loads and environmental effect. A deterioration model due to chloride ingress is first established. The damage models due to repetitive traffic loads considering the dry and wet conditions of deck slabs are proposed. These models are used to calculate the remaining life of a bridge deck slab. A prediction method for service life of deck slab due to loading and environmental effects is developed based on material, as well as structural evaluation. The proposed method includes the assessment of corrosion in material level, and the analyses of flexure, shear, and fatigue in structural level. Finally, an assessment system for prediction of safety and remaining service life is developed based on the theories established in this study. The developed assessment system will allow the correct diagnosis of damage state and the realistic prediction of service life of concrete decks in girder bridges.  相似文献   

15.
For decades, bridge slabs have been troubled by the corrosion of steel reinforcement. The unique corrosion resistance of glass fiber-reinforced polymer (GFRP) bars makes them a promising alternative to steel bars. Experiments have been conducted to investigate the bond performance of GFRP reinforced concrete under constant amplitude cyclic fatigue loading. Each specimen was an identical length beam with a single GFRP bar at the bottom, intended to simulate a transverse strip of a typical bridge deck slab. The crack growth was monitored for specimens of different widths, simulating different transverse reinforcement spacings. Up to 2?million?cycles of cyclic loads were applied at 100% typical service load levels. No fatigue failure was encountered in the testing. The effects of moderate overloads were also investigated.  相似文献   

16.
This paper addresses the laboratory and field performance of multicellular fiber-reinforced polymer (FRP) composite bridge deck systems produced from adhesively bonded pultrusions. Two methods of deck contact loading were examined: a steel patch dimensioned according to the AASHTO Bridge Design Specifications, and a simulated tire patch constructed from an actual truck tire reinforced with silicon rubber. Under these conditions, deck stiffness, strength, and failure characteristics of the cellular FRP decks were examined. The simulated tire loading was shown to develop greater global deflections given the same static load. The failure mode is localized and dominated by transverse bending failure of the composites under the simulated tire loading as opposed to punching shear for the AASHTO recommended patch load. A field testing facility was designed and constructed in which FRP decks were installed, tested, and monitored to study the decks’ in-service field performance. No significant loss of deck capacity was observed after more than one year of field service. However, it was shown that unsupported edges (or free edges) are undesirable due to transitional stiffness from approach to the unsupported deck edge.  相似文献   

17.
Glass fiber-reinforced polymer (GFRP) composite bridge decks behave differently than comparable reinforced concrete (RC) decks. GFRP decks exhibit reduced composite behavior (when designed to behave in a composite manner) and transverse distribution of forces. Both of these effects are shown to counteract the beneficial effects of a lighter deck structure and result in increased internal stresses in the supporting girders. The objective of this paper is to demonstrate through an illustrative example the implications of RC-to-GFRP deck replacement on superstructure stresses. It is also shown that, regardless of superstructure stresses, substructure forces will be uniformly reduced due to the lighter resulting superstructure.  相似文献   

18.
An existing mountable safety barrier system, previously crash tested successfully on a wood bridge deck, was evaluated for use on a fiber reinforced plastic (FRP) bridge deck. In an attempt to avoid expensive full-scale crash testing, components of the existing system were evaluated using worst case conditions on two dynamic bogie crash tests and a series of computer simulations using nonlinear finite-element analysis. Simulation results closely approximated the physical results, with both displaying similar deformation, damage, and force levels. Both testing and simulation demonstrated that the barrier should function sufficiently if used on the FRP deck system. Further, the development of an accurate model makes it possible to evaluate the potential success of the existing system for use on other bridge decks. As an example, a more rigid bridge deck, similar to reinforced concrete, was evaluated. Results showed that due to the stiffer deck, more of the impact energy must be absorbed by the posts and attachment hardware, resulting in significantly more deformation than when used on the flexible FRP deck.  相似文献   

19.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

20.
Four different fiber-reinforced polymer (FRP) panel systems were installed in a 207 m, five-span, three-lane bridge in an effort to assess the constructability, performance, and applicability of bridges with fiber-reinforced polymer composite decks. This paper examines whether four common deck systems are able to realize many of the anticipated benefits of using FRP composites in lieu of conventional reinforced concrete bridge decks. Particular installation issues, connection details, and specific construction techniques for each deck system are described, along with a discussion of the shortcomings in terms of handling, performance, and serviceability. Other factors such as key design parameters (e.g., impact factor and thermal characteristics) and unexpected responses are used to further quantify the performance of four FRP representative deck systems under identical traffic and environmental constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号