首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seismic Retrofit of Hollow Rectangular Bridge Columns   总被引:1,自引:0,他引:1  
The seismic performance of rectangular hollow bridge columns is a significant issue of the high-speed rail project in Taiwan. The flexural ductility and shear capacity of such columns with the configuration of lateral reinforcement used in Taiwan have been studied recently. This paper reports that hollow rectangular bridge columns retrofitted with fiber-reinforced polymer (FRP) sheets were tested under a constant axial load and a cyclically reversed horizontal load to investigate their seismic behavior, including flexural ductility, dissipated energy, and shear capacity. An analytical model was also developed to predict the moment-curvature curve of sections and the load-displacement relationship of columns. Based on the test results, the seismic behavior of such columns will be presented. The test results were also compared to the proposed analytical model. It was found that the ductility factors of the tested piers are in the range from 3.4 to 6.3, and the proposed analytical model can predict the load-displacement relationship of such columns with acceptable accuracy. All in all, FRP sheets can effectively improve both the ductility factor and shear capacity of hollow rectangular bridge columns.  相似文献   

2.
The seismic performance of rectangular hollow bridge columns has been a significant issue with the high-speed rail project in Taiwan, because the ductility of these columns is unknown. To investigate the seismic performance of hollow high-strength concrete bridge columns, six specimens were tested under a constant axial load and a cyclically reversed horizontal load. Based on the results of these tests an analytical model was developed in order to predict the moment-curvature curve of sections and the load-displacement relationship of the bridge columns. The seismic performance of the test specimens are presented in this paper. The test results were compared to both the analytical model and the shear capacity specified in the codes. It was found that the ductility factors of the tested columns range from 3.9 to 4.7, and that the analytical model predicts the load-displacement relationship of such columns with acceptable accuracy.  相似文献   

3.
This paper investigates the flexure of prestressed concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets, focusing on ductility and cracking behavior. Structural ductility of a beam strengthened with CFRP sheets is critical, considering the abrupt and brittle failure of CFRP sheets themselves. Cracking may also affect serviceability of a strengthened beam, and may be especially important for durability. Midscale prestressed concrete beams (L = 3.6?m) are constructed and a significant loss of prestress is simulated by reducing the reinforcement ratio to observe the strengthening effects. A nonlinear iterative analytical model, including tension of concrete, is developed and a nonlinear finite-element analysis is conducted to predict the flexural behavior of tested beams. The prestressed CFRP sheets result in less localized damage in the strengthened beam and the level of the prestress in the sheets significantly contributes to the ductility and cracking behavior of the strengthened beams. Consequently, the recommended level of prestress to the CFRP sheets is 20% of the ultimate design strain with adequate anchorages.  相似文献   

4.
In order to reliably obtain seismic responses of as-built and repaired reinforced concrete bridge columns under near-fault ground motions, pseudodynamic testing of two bridge columns with a reduced scale of 2/5 was performed. Pseudodynamic test results reveal that a ductile member may have no chance to entirely develop its ductile behavior to dissipate seismic energy, because it may suddenly be destroyed by a significant pulse-like wave. The seismic performance of the two damaged bridge columns can be recovered after repair with carbon fiber reinforced plastics composite sheets. It is also experimentally confirmed that the flexural failure moment obtained from the pseudodynamic test is in good agreement with the plastic moment predicted by the ACI 318 code. As pseudodynamic test results are believed to be more accurate than numerical solutions, they can be considered as reference solutions in developing a finite-element model. An identical specimen was tested under cyclic loading to estimate basic properties of these columns, such as shear strength, flexural strength, and ductility, so that the seismic responses obtained from pseudodynamic tests can be thoroughly discussed. Furthermore, its hysteretic response may also be used to match a mathematical model to simulate the very complicated load-displacement relation for analysis.  相似文献   

5.
Shear failure of exterior beam-column joints is identified as the principal cause of collapse of many moment-resisting frame buildings during recent earthquakes. Effective and economical strengthening techniques to upgrade joint shear resistance and ductility in existing structures are needed. In this paper, efficiency and effectiveness of carbon fiber-reinforced polymer (CFRP) sheets in upgrading the shear strength and ductility of seismically deficient exterior beam-column joints have been studied. Four as-built joints were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing most of existing beam-column connections. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All of these four subassemblages were subjected to cyclic lateral load histories so as to provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, joint shear distortion, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the exterior beam-column joints and delaying their stiffness degradation.  相似文献   

6.
The objective of this research is to investigate the seismic performance of as-built, retrofitted, and repaired hollow bridge columns with insufficient shear strength. Two as-built full-scale columns were first tested and repaired using carbon-fiber-reinforced polymer composites (CFRP) jackets and dog-bone-shaped bars and then retested. Another two columns having the same reinforcement as the as-built columns were retrofitted with CFRP jackets. In addition to the tests, the repairability of the failed hollow columns was investigated by analytical evaluation. The test results and analysis of the retrofitted columns showed that CFRP composites can effectively strengthen shear-critical hollow bridge columns and can successfully transform the failure mode from shear to flexure. The test results of the repaired circular columns show that dog-bone-shaped bars successfully repaired the flexural damage caused by the fractured longitudinal bars.  相似文献   

7.
In this paper, efficiency and effectiveness of carbon fiber-reinforced polymers (CFRP) in upgrading the shear strength and ductility of seismically deficient beam-column joints have been studied. For this purpose, four reinforced concrete interior beam-column sub-assemblages were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing the vast majority of existing beam-column connections. Out of these four, two specimens were used as baseline specimens (control specimens) and the other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to the joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to the joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All four subassemblages were subjected to cyclic lateral load histories so as to provide the equivalent of severe earthquake damage. Further, the damaged control specimens were repaired after filling the cracks through epoxy and wrapping them with CFRP sheets under the same two above-mentioned schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Hence, a total of six specimens were tested: two control; two strengthened; and two repaired. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles (maximum horizontal displacements of column along its height), joint shear distortion, ductility, and stiffness degradation. The comparison shows that CFRP sheets improve the shear resistance of the joint and increase its ductility. Results of two chosen schemes of strengthening were also compared and the importance of beam upgrading was highlighted.  相似文献   

8.
This paper details the use of carbon fiber reinforced polymer (CFRP) sheets to repair and strengthen prestressed concrete bridge girders in flexure and shear. Three specimens that were removed from an overloaded bridge (Bridge No. 56) in Graham County, Kansas were tested. Two of the specimens were repaired and strengthened, and all three were tested to failure to determine flexural capacity. Test results showed that two layers of longitudinal CFRP sheets increased the flexural capacity of the strengthened specimens by 20% compared to an unstrengthened control specimen. Shear capacity was also evaluated on both ends of each specimen. Two different cases were evaluated in shear. One case allowed shear cracks to propagate inside the transfer length of the prestressing strand, allowing a bond failure to occur. The second case forced the shear cracks to remain outside of the transfer length, thereby preventing a bond failure. The test results show that transverse CFRP sheets increased the shear capacity of the specimens tested by as much as 28%, but did not prevent bond failures.  相似文献   

9.
In this paper, efficiency and effectiveness of carbon fiber reinforced polymers (CFRPs) in upgrading the shear strength and ductility of seismically deficient corner or knee reinforced concrete beam-column joints have been studied. For this purpose, four as-built corner/knee joints were constructed with no transverse reinforcement, representing extreme case of preseismic code design construction practice of joints and encompassing many existing beam-column corner joints. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All these four subassemblages were subjected to cyclic lateral load histories to simulate loading due to earthquake and provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the corner beam-column joints and delaying their stiffness degradation. Shear capacities of control, repaired, and strengthened specimens were also predicted using writers’ published formulation. The predicted shear capacities were in a good agreement with the experimental values.  相似文献   

10.
A technique for strengthening damaged concrete beams using prestressed carbon fiber reinforced polymer (CFRP) sheets was developed at Queen’s University and the Royal Military College of Canada. As part of this study, an anchorage system was developed to directly prestress the CFRP sheets by jacking and reacting against the strengthened concrete beam itself. The feasibility and effectiveness of using bonded prestressed CFRP sheets to strengthen precracked concrete beams at both room (+22°C,+72°F) and low (?28°C,?20°F) temperatures have been investigated experimentally. Materials and prestress changes due to temperature variations that would affect and cause changes in flexural behavior were studied. The strengthened beams showed significant increases in flexural stiffness and ultimate capacity as compared to the control-unstrengthened beams. The flexural behavior of the strengthened beams was not adversely affected by short-term exposure to reduced temperature (?28°C,?20°F). In addition to the experimental investigation, analytical models were developed to predict the overall flexural behavior of the strengthened beams during prestressing of the CFRP sheets and under external loading at both room and low temperatures. The model accurately predicted the flexural beam behavior. Improved serviceability behavior and higher strength were predicted for beams strengthened with the bonded prestressed CFRP sheets.  相似文献   

11.
Experiments were conducted to study the effect of using epoxy mortar patch end anchorages on the flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets. More specifically, the effect of the end anchorage on strength, deflection, flexural strain, and interfacial shear stress was examined. The test results show that premature debonding failure of reinforced concrete beams strengthened with CFRP sheet can be delayed or prevented by using epoxy mortar patch end anchorages. A modified analytical procedure for evaluating the flexural capacity of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar end anchorage is developed and provides a good prediction of test results.  相似文献   

12.
This paper presents experimental and analytical work conducted to explore the feasibility of using an innovative technique for seismic retrofitting of RC bridge columns using shape memory alloys (SMAs) spirals. The high recovery stress associated with the shape recovery of SMAs is being sought in this study as an easy and reliable method to apply external active confining pressure on RC bridge columns to improve their ductility. Uniaxial compression tests of concrete cylinders confined with SMA spirals show a significant improvement in the concrete strength and ductility even under small confining pressure. The experimental results are used to calibrate the concrete constitutive model used in the analytical study. Analytical models of bridge columns retrofitted with SMA spirals and carbon fiber-reinforced polymer (CFRP) sheets are studied under displacement-controlled cyclic loading and a suite of strong earthquake records. The analytical results proves the superiority of the proposed technique using SMA spirals to CFRP sheets in terms of enhancing the strength and effective stiffness and reducing the concrete damage and residual drifts of retrofitted columns.  相似文献   

13.
In this paper, the efficiency and effectiveness of carbon-fiber-reinforced polymer (CFRP) sheets for upgrading the shear strength and ductility of a seismically deficient exterior beam-column joint were studied and compared with an American Concrete Institute (ACI)-based design joint specimen. One as-built joint specimen, representing the preseismic code design and construction practice for joints and one ACI-based design joint specimen, satisfying the seismic design requirements of the current code of practice were cast. The as-built specimen was used as baseline (control) specimen. These two specimens (i.e., the as-built control and the ACI-based specimens) were subjected to cyclic lateral load histories to induce damage equivalent to damage expected from a severe earthquake. The damaged control specimen was then repaired by filling its cracks with epoxy and externally bonding CFRP sheets to the joint, the beam, and part of the column regions. This specimen was identified as the repaired specimen. The repaired specimen was subjected to a similar cyclic lateral load history, and its response history was recorded. The response histories of the as-built control, the repaired, and the ACI-based design specimen were then compared. The test results demonstrated that externally bonded CFRP sheets can effectively improve both the shear strength and the deformation capacity of seismically deficient and damaged beam-column joints to a state comparable to the ACI-based design joint.  相似文献   

14.
This paper presents the results of an experimental investigation undertaken to evaluate the punching shear capacity of interior slab–column connections, strengthened using flexible carbon fiber-reinforced polymer (CFRP) sheets. Sixteen square (670×670?mm) slab–column connections with different slab thicknesses (55 and 75 mm) and reinforcement ratios (1 and 1.5%) were tested. Twelve specimens were strengthened using CFRP sheets and the remaining four specimens were kept as controls. Without strengthening, all specimens were designed to experience punching shear failure. The CFRP sheets were bonded to the tension face of the specimens in two perpendicular directions parallel to the internal ordinary steel reinforcement. The test results clearly demonstrate that using CFRP leads to significant improvements in the flexural stiffness, flexural strength, and shear capacity of beam–column connections. Depending on the content of the ordinary reinforcement, thickness of the slab, and area of CFRP sheet, the flexural strength increased between 26 and 73% and the shear capacity increased between 17 and 45%. The measured stress in the CFRP sheets at nominal strength varied between 22 and 69% of the ultimate tensile strength of the fibers. Comparison with available prediction equations showed that the punching shear capacity can be predicted with reasonable accuracy if the contribution of CFRP reinforcement to the increase in flexural strength is accounted for. On the other hand, the code design expressions were conservative in predicting the capacity observed in the tests.  相似文献   

15.
A composite system consisting of rectangular glass fiber reinforced polymer (GFRP) tubes connected to concrete slabs, using GFRP dowels has been developed. Seven beam specimens have been tested, including hollow and concrete-filled GFRP tubes with and without concrete slabs. Beam–slab specimens had two different shear span-to-depth ratios and one specimen had carbon–fiber reinforced polymer (CFRP)-laminated tension flange for enhanced flexural performance. Additionally, three double-shear GFRP tube-slab assemblies have been tested to assess the shear behavior of GFRP dowels, in both hollow and concrete-filled tubes. Three compression stubs of concrete-filled tubes were also tested by loading them parallel to the cross-section plane, to study GFRP web buckling behavior. The study showed that GFRP dowels performed well in shear and that composite action is quite feasible. While hollow tubes can act compositely with concrete slabs, more slip between the tube and slab would occur, compared to a concrete-filled tube-slab system. Simplified models are proposed to predict critical web buckling load of fiber reinforced polymer (FRP) tubes. Based on the models, a critical shear span-to-depth ratio of 4 was determined, below which web buckling may occur before flexural failure.  相似文献   

16.
Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of reinforced concrete structures. The objective of this investigation is to study the effectiveness of externally bonded CFRP sheets or carbon fiber fabric in increasing the flexural strength of concrete beams. Four-point bending flexural tests were conducted up to failure on nine concrete beams strengthened with different layouts of CFRP sheets and carbon fiber fabric and on three beams with different layouts of anchored CFRP sheets. An analytical procedure, based on compatibility of deformations and equilibrium of forces, was presented to predict the flexural behavior of beams strengthened with CFRP sheets and carbon fiber fabric. Comparisons were made between the test results and the analytical calculations. The flexural strength was increased up to 58% on concrete beams strengthened with anchored CFRP sheets.  相似文献   

17.
This paper presents a study on the flexural behavior of two-way reinforced concrete slabs externally strengthened with prestressed or nonprestressed carbon fiber-reinforced polymer (CFRP) sheets. Four large-scale flat plate slabs (3,000?mm×3,000?mm×90?mm) are tested and a nonlinear three-dimensional finite-element analysis is conducted to predict the flexural behaviors of the tested slabs, including the load-deflection response, strain distribution, crack propagation, and crack mouth opening displacement. An increase in the load-carrying capacity of 25 and 72% is achieved for the slabs strengthened with nonprestressed and prestressed CFRP sheets, respectively, in comparison to the unstrengthened slab. A reduction of the deflections up to 32% in service is noted for the strengthened slabs. The unstrengthened slab shows very ductile behavior, whereas, progressive failure is observed for the strengthened slabs, exhibiting pseudoductility in postpeak behavior. Stress redistribution between the internal and external reinforcement is significant in the slab strengthened with prestressed CFRP sheets.  相似文献   

18.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

19.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

20.
This study concentrates on analytical evaluation of the effect of external confinement using fiber reinforced polymers (FRP) sheets on the response of concrete rectangular columns designed for gravity load only and having spliced longitudinal reinforcement at the column base. A general analytical scheme for evaluating the strength capacity and ductility of the columns under combined flexural–axial loads was developed. The analysis takes into account the bond strength degradation of the spliced reinforcement with increase in lateral load by incorporating a generalized bond stress–slip law, and considers the effect of FRP confinement on the stress–strain response of concrete material. Particular emphasis is placed in the analysis on the slip response of the spliced bars and the consequent fixed end rotation that develops at the column base. Results predicted by the analysis showed very good agreement with limited experimental data. A parametric evaluation was carried out to evaluate the effect of different design and strength parameters on the column response under lateral load. Without confinement, the columns suffered premature bond failure and, consequently, low flexural strength capacity. Confining the concrete in the columns end zone at the splice location with FRP sheets enhanced the bond strength capacity of the spliced reinforcement, increased the steel stress that can be mobilized before bond failure occurs, and consequently improved the flexural strength capacity and ductility of the columns. A general design equation, expressed as a function of the main parameters that influence the bond strength capacity between spliced steel bars and FRP confined concrete, is proposed to calculate the area of FRP sheets needed for strengthening of the subject columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号