共查询到20条相似文献,搜索用时 15 毫秒
1.
Akhrawat Lenwari Thaksin Thepchatri Pedro Albrecht 《Canadian Metallurgical Quarterly》2006,10(1):69-78
This paper addresses the debonding strength of partial-length, adhesively bonded carbon fiber-reinforced polymer (CFRP) plates that are used to strengthen steel beams. Bonded CFRP plates tend to debond under static and fatigue loadings because of the very high stress field at the plate end. Such failures limit the application of CFRP plates. Static and fatigue tests show that the stress intensity factor governs the debonding strength. The steel/adhesive corner was the locus of debond initiation. The effects of the following parameters on stress intensity factors are discussed: plate thickness, plate modulus, bondline thickness, adhesive modulus, and adhesive spew-fillet angle. The stress intensity factors are calculated using the Betti’s law-based reciprocal work contour integral method (RWCIM). The parametric study results indicate that the stress intensity factors cannot be used to represent the severity of the corner as the adhesive spew-fillet angle (and singularity) changes. Therefore, the use of stress intensity factors as a failure criterion for the purpose of predicting debonding strength is limited to the same spew-fillet angle. 相似文献
2.
Reinforced concrete beams are now commonly retrofitted using externally bonded (EB) fiber reinforced polymer (FRP) plates as the technique is both inexpensive and unobtrusive. However, tests have shown that EB carbon FRP plates tend to debond at low strains, which can severely limit the ductility or moment redistribution to such an extent that guidelines often preclude moment redistribution. This paper reports the moment redistribution achieved in tests on nine near full-scale two-span continuous reinforced concrete beams that were retrofitted with near-surface mounted (NSM) plates. The plates were either carbon FRP or high yield steel strips which were adhesively bonded within saw grooves cut into the concrete cover on the tension face or sides of the beam. It was found that the debonding strains of these NSM plates were considerably larger than those associated with EB plates and that substantial amounts of moment redistribution occurred. These tests suggest that NSM plates can be used to increase the strength of reinforced concrete structures with little, if any, loss of ductility. 相似文献
3.
Retrofitting concrete structures with fiber reinforced polymer (FRP) has today grown to be a widely used method throughout most parts of the world. The main reason for this is that it is possible to obtain a good strengthening effect with a relatively small work effort. It is also possible to carry out strengthening work without changing the appearance or dimensions of the structure. Nevertheless, when strengthening a structure with external FRP, it is often not possible to make full use of the FRP. The reason for this depends mainly on the fact that a strain distribution exists over the section due to dead load or other loads that cannot be removed during strengthening. This implies that steel yielding in the reinforcement may already be occurring in the service limit state or that compressive failure in the concrete is occurring. By prestressing, a higher utilization of the FRP material is made possible. It is extremely important to ensure that, if external prestressing is used, the force is properly transferred to the structure. Most of the research conducted with prestressing carbon fiber reinforced polymer (CFRP) for strengthening has been on surface bonded laminates. However, this paper presents research on prestressed CFRP quadratic rods bonded in sawed grooves in the concrete cover. This method has proven to be an advantageous means of bonding CFRP to concrete, and in comparison to surface bonded laminates, the shear and normal stress between the CFRP and the concrete are more efficiently transferred to the structure. In the presented test, no mechanical device has been used to maintain the prestress during testing, which means that the adhesive must transfer all shear stresses to the concrete. Fifteen beams with a length of 4?m have been tested. The tests show that the prestressed beams exhibited a higher first-crack load as well as a higher steel-yielding load as compared to nonprestressed strengthened beams. The ultimate load at failure was also higher, as compared to nonprestressed beams, but in relation not as large as for the cracking and yielding. In addition, the beams strengthened with prestressed FRP had a smaller midpoint deflection. All strengthened beams failed due to fiber rupture of the FRP. 相似文献
4.
This paper presents the results of an experimental investigation into the behavior of slender steel columns strengthened using high-modulus (313?GPa), carbon fiber-reinforced polymer (CFRP) plates. Eighteen slender hollow structural section square column specimens, 44×44×3.2?mm, were concentrically loaded to failure. The effectiveness of CFRP was evaluated for different slenderness ratios (kL/r), namely, 46, 70, and 93. The maximum increases in ultimate load ranged from 6 to 71% and axial stiffness ranged from 10 to 17%, respectively, depending on kL/r. As kL/r reduced, the effectiveness of CFRP plates also reduced, and failure mode changed from CFRP plate crushing after occurrence of overall buckling, to debonding prior to, or just at, buckling. A simplified analytical model is proposed to predict the ultimate axial load of FRP-strengthened slender steel columns, based on the ANSI/AISC 360-05 provisions, which were modified to account for the transformed section properties and a failure criteria of FRP derived from the experimental results. It was shown that for a given FRP reinforcement ratio, there is a critical kL/r at the low end, below which FRP may not enhance the strength of the column. 相似文献
5.
Due to corrosion and the continuous demand to increase traffic loads, there is a need for an effective system which can be used to repair and/or strengthen steel bridges and structures. This paper describes an experimental program, recently completed, to investigate the fundamental behavior of steel–concrete composite scaled bridge beams strengthened with new high modulus carbon fiber-reinforced polymer (HM CFRP) materials. The behavior of the beams under overloading conditions and fatigue loading conditions was studied as well as the possible presence of shear lag at the interface of the steel surface and the CFRP strengthening material. The test results are compared to an analytical model based on the fundamental principles of equilibrium and compatibility, to predict the behavior of the strengthened steel–concrete composite beams. Based on the findings of this research work, combined with other work in the literature, a design guideline is proposed for the use of HM CFRP for strengthening the steel flexural members typically used for bridges and structures. 相似文献
6.
One significant cause of deterioration of steel bridge structures is the corrosion due to extensive use of deicing salts in winter weather. The investigation presented in this paper focused on the behavior of steel composite beams damaged intentionally at their tension flange to simulate corrosion and then repaired with carbon fiber-reinforced polymer (CFRP) plates attached to their tension areas side. Damage to the beams was induced by removing part of the bottom flange, which was varied between no damage and loss of 75% of the bottom flange. All beams were tested to failure to observe their behavior in the elastic, inelastic, and ultimate states. To help implement this strengthening technique, a nonlinear analytical procedure was also developed to predict the behavior of the section/member in the elastic, inelastic, and ultimate states. The test results showed a significant increase in the strength and stiffness of the repaired beams. Through the use of CFRP plates, all damaged beams were fully restored to their original (undamaged state) strength. 相似文献
7.
Experiments were conducted to study the effect of using epoxy mortar patch end anchorages on the flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets. More specifically, the effect of the end anchorage on strength, deflection, flexural strain, and interfacial shear stress was examined. The test results show that premature debonding failure of reinforced concrete beams strengthened with CFRP sheet can be delayed or prevented by using epoxy mortar patch end anchorages. A modified analytical procedure for evaluating the flexural capacity of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar end anchorage is developed and provides a good prediction of test results. 相似文献
8.
For reinforced concrete beams retrofitted with fiber-reinforced polymer (FRP) plates, an analytical method is derived for determining the allowable plate area to achieve a targeted value of ductility. Nonlinear models for concrete and reinforcement are applied, and the effects of concrete confinement and spalling and of FRP plate rupture are considered. The derivation of equilibrium and compatibility equations for a rectangular cross section is presented, and the solution to the nonlinear equation for determining the allowable plate area is demonstrated with examples. Analytical results are compared with numerical and experimental data reported in the literature. Subsequently a simplified version of the method is derived, based on regression analysis, to relate the curvature ductility to the FRP plate ratio. It is noted that additional conditions need to be checked to ensure ductile performance, such as local failure of the concrete layer between tension reinforcement and FRP plate or debonding of the plate itself. 相似文献
9.
This paper presents experimental results of reinforced concrete beams strengthened using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) reinforcement. A total of nine beam specimens were tested under fatigue loads. In addition, two specimens were tested for monotonic capacity. The beams were 3,500 mm long with a cross section of 254 mm deep by 152 mm wide. Different load ranges were considered in the fatigue tests to construct the fatigue life curves. The test results showed that under monotonic loading, the beam strengthened with NSM CFRP rod exhibited increases of 26 and 50% in the yield and ultimate load over the control beam, respectively. Under cyclic loading, the fatigue life for the strengthened beams was 24% higher than that of the control unstrengthened beams. An analytical model using sectional analysis and strain-life approach was developed to estimate the fatigue life of the specimens at various cyclic load ranges. A good agreement between the experimental results and analytical prediction of the fatigue life was obtained. 相似文献
10.
Many buildings and bridge elements are subjected to significant torsional moments that affect the design, and may require strengthening. Fiber-reinforced polymer (FRP) has shown great promise as a state-of-the-art material in flexural and shear strengthening as external reinforcement, but information on its applicability in torsional strengthening is limited. Furthermore, available design tools are sparse and unproven. This paper briefly recounts the experimental work in an overall investigation of torsional strengthening of solid and box-section reinforced concrete beams with externally bonded carbon fiber-reinforced polymer (CFRP). A database of previous experimental research available in literature was compiled and compared against fib Bulletin 14. Modifications consistent with the space truss model were proposed to correct the poor accuracy in predictions of CFRP contribution to strength. Subsequently, a design tool to analyze the full torsional capacity of strengthened reinforced concrete beams was validated against the experimental database. 相似文献
11.
Marco A. Pisani 《Canadian Metallurgical Quarterly》2006,10(4):313-320
This paper deals with reinforced concrete beams strengthened by means of externally bonded fiber-reinforced polymer (FRP) sheets. The scope of the work is to discuss and compare an exact and an approximate approach to the computation of the flexural load-carrying capacity of the strengthened beam. The two approaches differ from one another in the way they take into account the extent of the load already acting throughout strengthening operations. To achieve this goal a numerical model is presented and validated by comparing its output with that of 46 experimental tests taken from the literature. The numerical model is then adopted to perform a numerical parametric analysis of a wide range of practical applications, excluding all cases of FRP delamination, and useful conclusions are drawn. 相似文献
12.
The main disadvantage of reinforced concrete beams retrofitted with steel or fiber reinforced polymer (FRP) plates adhesively bonded to the external surfaces is the premature debonding of the plates before reaching the desired strength or ductility. One of the main mechanisms of debonding failure is intermediate crack (IC) debonding, which is initiated by the formation of flexural cracks in the vicinity of the plates causing slip to occur at the plate/concrete interfaces. Much of the existing research focuses on the bond–slip relationship at the plate/concrete interface, with a lack of attention on the IC debonding behavior of flexural members. In this research, a model is described for IC debonding of plated RC beams that is based on partial interaction theory. To allow a better understanding of the IC debonding behavior of plated members, studies are carried out using the proposed model to study the effects of variations in crack spacings and rate of change of moment, and it is shown that both of these factors as well as the number of cracks in the beam can have large effects on the local behavior and the resultant strains in the plated member. 相似文献
13.
Acceptance of carbon fiber-reinforced polymer (CFRP) materials for strengthening concrete structures, together with the recent availability of higher modulus CFRP strips, has resulted in the possibility to also strengthen steel structures. Steel bridge girders and building frames may require strengthening due to corrosion induced cross-section losses or changes in use. An experimental study investigating the feasibility of different strengthening approaches was conducted. Large-scale steel-concrete composite beams, typical of bridge structures, were used to consider the effect of CFRP modulus, prestressing of the CFRP strips, and splicing finite lengths of CFRP strips. All of the techniques examined were effective in utilizing the full capacity of the CFRP material, and increasing the elastic stiffness and ultimate strength of the beams. Results of the experimental program were compared to an analytical model that requires only the beam geometry and the constitutive properties of the CFRP, steel, and concrete. This model was used to investigate the importance of several key parameters. Finally, an approach for design is proposed that considers the bilinear behavior of a typical strengthened beam to the elastic-plastic behavior of the same beam before strengthening. 相似文献
14.
When strengthening concrete members with fiber-reinforced plastic (FRP) materials the strengthening is, typically, undertaken to carry live load. This live load is assumed to remove itself from the strengthened member in the event of a fire. Thus, the fire performance of the FRP is not important. However, if the strengthening system was designed such that the FRP took some of the dead load, then the performance in fire would become important. In this series of tests, 24 reinforced concrete beams were cast. They were divided into eight sets of three. The sets were split into fire tested and control. In the control group were an unstrengthened control set, a set strengthened with bonded carbon FRP (CFRP) plates, and a set with bonded CFRP plates with bolted anchorages. In the fire-tested group were an unstrengthened control set, a set strengthened with bonded CFRP plates, a set with bonded CFRP plates with bolted anchorages, a set strengthened with bonded CFRP plates and a cementitous fire protection system, and a set with bonded CFRP plates with bolted anchorages and a cementitous fire protection system. The unloaded beams were then subjected to a cellulosic fire in a furnace. The adhesive on the unprotected beams was destroyed by the fire, as was the resin in the CFRP plate. On the strengthened beams with a cementitous fire protection system the adhesive was destroyed by the fire but the resin in the CFRP plate was undamaged. All the beams were tested in four-point bending to determine their load capacity and stiffness. Of the non-fire-tested beams the control beams were weakest and the strengthened beams were stronger and stiffer, there being no significant difference between the bolted and nonbolted beams. The fire-tested beams were load tested postfire exposure. Of the fire-tested beams the control beams had the same properties as the non-fire-tested control beams. The unbolted beams had the same strength regardless of fire protection. One of the bolted beams with fire protection was stronger than those without fire protection but not as strong as the nonfire-tested beams. It can be concluded that the strengthening system in the unprotected beams was destroyed in the fire test. Where fire protection was provided this protected the resin in the CFRP plate but not the adhesive bonding the plate to the beams. Bolts helped to keep the plate attached to the beam but did not provide as good a connection as the adhesive. 相似文献
15.
Flexural Response of Reinforced Concrete Beams Strengthened with End-Anchored Partially Bonded Carbon Fiber-Reinforced Polymer Strips 总被引:1,自引:0,他引:1
This paper presents the results of experimental and analytical studies carried out to investigate the flexural behavior of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer (CFRP) strips. A total of six beams, each 2400 mm long, 150 mm wide, and 250 mm deep with a tension steel reinforcement ratio of 1.18%, were tested. One beam was left unstrengthened as the control, another beam was strengthened with a fully bonded CFRP strip, and the remaining four beams were strengthened with partially bonded CFRP strips placed on the tension face of the beam and fixed at both ends using a mechanical anchor. The influence of varying the CFRP unbonded length (250 mm, 750 mm, 2×500 mm, and 1,250 mm) on the beam flexural response was studied. The experimental results revealed that end-anchored partially bonded CFRP strips significantly enhanced the ultimate capacity of the control beam and performed better than the fully bonded strip with no end-anchorage. This observation stresses the importance of end-anchorage in such strengthening schemes, especially considering that the end-anchored partially bonded CFRP strengthened beams showed similar flexural behavior trends. Finally, an inelastic section analysis procedure that takes into consideration the incompatibility of strains was developed to verify the obtained test results. The analysis produced good predictions of the experimental results in terms of the moment-curvature response and showed the effect of CFRP unbonded length on the strain of the internal tension steel. 相似文献
16.
One promising means of increasing the capacity of existing shear-deficient beams is to strengthen the structure using external prestressed carbon fiber reinforced polymer (CFRP) straps. In this system, layers of CFRP tape are wrapped around a beam to form a strap that acts like a discrete unbonded vertical prestressing tendon. Experiments were undertaken to investigate the influence of the strap spacing, the strap stiffness, the initial strap prestress level and/or any preexisting damage on the strengthened behavior, and mode of failure. An unstrengthened control beam was tested and failed in shear. In contrast, all of the strengthened beams showed a significant increase in their ultimate load capacity with several of the strengthened beams failing in flexure. A number of different failure modes were noted and initial guidelines on the design parameters that influence the propensity for a particular failure mode were developed. 相似文献
17.
An investigation was conducted on the flexural behavior of partially bonded fiber-reinforced polymer (FRP) strengthened concrete beams focusing on the improvement of ductility. An analytical model was developed based on the curvature approach to predict the behavior of beams strengthened with partially bonded FRP systems. The result of the analysis showed that ductility of the partially bonded system was improved while sustaining high load carrying capacity in comparison to the fully bonded system. To verify the analytical model, an experimental program was carried out with reinforced concrete beams strengthened with the externally bonded FRP system. A comparison of the analytical prediction and experimental results showed good agreement. 相似文献
18.
Ye Huawen Christian K?nig Thomas Ummenhofer Qiang Shizhong Robin Plum 《Canadian Metallurgical Quarterly》2010,14(5):609-615
An experimental and analytical study was conducted to investigate the fatigue behavior of tension steel plates strengthened with prestressed carbon-fiber-reinforced polymer (CFRP) laminates. A simple fracture mechanics model was proposed to predict the fatigue life of reinforced specimens. Double-edge-notched specimens were precracked by fatigue loading and then strengthened by CFRP laminates at different prestressing levels. The effects of the applied stress range, CFRP stiffness, and prestressing level on the crack growth were investigated. Experimental results show that the increase of the prestressing level extends the fatigue life of a damaged steel plate to a large amount. The CFRP with the highest prestressing level performed best, prolonging fatigue life by as much as four times under 25% higher fatigue loading. Theoretically, predicted results were in a reasonable agreement with the experimental results. A parametric analysis was also performed to investigate the effects of the applied stress range and the prestressing level on the debonding behavior of the adhesive and on the secondary crack propagation. 相似文献
19.
Experimental Investigation on Torsional Behavior of Solid and Box-Section RC Beams Strengthened with CFRP Using Photogrammetry 总被引:1,自引:0,他引:1
The construction boom over the last century has resulted in a mature infrastructure network in developed countries. Lately, the issue of maintenance and repair/upgrading of existing structures has become a major issue, particularly in the area of bridges. Fiber- reinforced polymer (FRP) has shown great promise as a state-of-the-art material in flexural and shear strengthening as external reinforcement, but information on its applicability in torsional strengthening is limited. The need for torsional strengthening in bridge box girders is highlighted by the Westgate Bridge in Melbourne, Australia, one of the largest strengthening projects in the world for externally bonded carbon FRP (CFRP) laminates. This paper reports the experimental work in an overall investigation of torsional strengthening of solid and box-section reinforced concrete beams with externally bonded carbon FRP. This was found to be a viable method of torsional strengthening. Photogrammetry was a noncontact measuring technique used in the investigation. The deformation mechanisms were found to be unchanged in the strengthened specimens. Furthermore, it was found that the crack widths were reduced and aggregate interlocking action improved with the strengthened beams. 相似文献
20.
This work presents the results of an experimental research program, carried out at the Technical University of Catalonia, to study the debonding behavior of carbon fiber-reinforced polymers (CFRPs) used to strengthen beams in bending. The research is a part of a program that aims to study the strengthening of concrete bridges (both monolithic and segmental) using CFRPs. The overall objective of this paper is to present the results obtained from bond tests performed on material-scale specimens and full-scale tests performed on monolithic and segmental beams. A normalized test is proposed to obtain a more reliable estimate of the debonding strain of CFRPs, which may govern the design of CFRP-strengthened concrete structures. The test is proposed to supplement available design models, as the formula of km included in ACI 440.2R-02 by ACI Committee 440. The results from the tests are checked with the data obtained in large-scale tests, representative of actual bridges. The reported values are significantly lower than those reported in other tests with specimens of a lower size. An explanation is that a size effect can exist, which affects the debonding failure mechanisms. Extrapolation of results—from models calibrated with specimens of reduced dimensions to real structures—may lead to unsafe predictions of the debonding strain. In conclusion, the proposed simplified bond test more accurately estimates the load bearing capacity, which in practical cases is not perfectly well covered by the existing models; for instance when discontinuities (cracks or joints) are present in the concrete where the CFRP is bonded. 相似文献