首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results from experimental testing of three permit vehicles are presented in the paper. The selected heavy vehicles, which require permits from state DOTs, included two tractor-trailer systems and a midsize crane. The vehicles were experimentally tested on popular existing speed bumps and on a representative highway bridge. The selected bridge was a reinforced-concrete structure constructed in 1999, located on the U.S. 90 in Northwest Florida. The bridge approach depression, combined with a distinct joint gap between the asphalt pavement and the concrete deck, triggered significant dynamic responses of the vehicle-bridge system. Similar dynamic vibrations were observed and recorded when the permit vehicles were driven over the speed bumps. Time histories of relative displacements, accelerations, and strains for selected locations on the vehicle-bridge system were recorded. The analysis of experimental data allowed for assessment of actual dynamic interactions between the vehicles and the speed bumps as well as dynamic load allowance factors for the selected bridge.  相似文献   

2.
The dynamic responses of steel deck, tension-tied, arch bridges subjected to earthquake excitations were investigated. The 620 ft (189 m) Birmingham Bridge, located in Pittsburgh, was selected as an analytical model for the study. The bridge has a single deck tension-tied arch span and is supported by two bridge piers, which in turn are supported by the pile foundations. Due to the complex configuration of the deck system, two analytical models were considered to represent the bridge deck system. Using the normal mode method, seismic responses were calculated for two bridge models and the results were compared with each other. Three orthogonal records of the El Centro 1940 earthquake were used as input for the seismic response analysis. The modal contributions were also checked in order to obtain a reasonable representation of the response and to minimize computational cost. Displacements and stresses at the panel points of the bridge are calculated and presented in graphical form.  相似文献   

3.
In this paper the vehicle induced dynamic bridge responses are calculated by modeling the bridge and vehicle as one coupled system. The dynamic behavior of short slab bridges with different span lengths induced by the AASHTO HS20 truck is investigated. A parametric study is conducted to analyze the effects of different truck speeds and different road surface conditions. Critical truck speeds that result in peaks of dynamic response are found to follow the rule that describes the resonant vibration of bridges due to train loading. The approach slab condition that consists of faulting at the ends and deformation along the span is considered in the analysis. Although the effect of the along-span deformation on the dynamic response of bridges is trivial, the faulting condition of the approach slab is found to cause significantly large dynamic responses in short-span slab bridges. Impact factors obtained from numerical analyses are compared with those values specified in the AASHTO codes.  相似文献   

4.
Stick models are widely employed in the dynamic analysis of bridges when only approximate results are desired or when detailed models are difficult or time-consuming to construct. Although the use of stick models for regular bridges has been validated by various researchers, the application of such models to skew highway bridges continues to present challenges. The conventional single-beam stick model used to represent the bridge deck often fails to capture certain predominant vibration modes that are important in obtaining the true dynamic response of the bridge. In this paper, a refined stick model is proposed for the preliminary dynamic analysis of skew bridges. The model utilizes a dual-beam stick representation of the bridge deck. The validity of the model is established by comparing results obtained from the proposed model with numerical solutions obtained for skew plates and a skew bridge. It is shown that this dual-beam stick model is superior to the conventional single-beam model in estimating the natural vibration frequencies and in predicting the predominant vibration modes of the bridge. Because of its simplicity and relative accuracy, this model is recommended for the preliminary dynamic analysis of skew highway bridges.  相似文献   

5.
Several full-scale load tests were performed on a selected Florida highway bridge. The bridge was dynamically excited by two fully loaded trucks, and the strain, acceleration, and displacement at selected points were recorded for the investigation of the bridge’s dynamic response. Experimental data were compared with simplified vehicle and bridge finite-element models. The vehicle was represented as a three-dimensional mass–spring–damper system with 11?degrees of freedom, and the bridge was modeled as a combination of plate and beam elements that characterize the slab and girders, respectively. The equations of motion were formulated with physical components for the vehicle and modal components for the bridge. The coupled equations were solved using a central difference method. It was found that the numerical analysis matched well with the experimental data and was used to successfully explain critical dynamic phenomena observed during the testing. Impact factors for this tested bridge were thoroughly investigated by using these models.  相似文献   

6.
In this paper, the static and seismic performance of some short span reinforced concrete arch bridges, before and after strengthening interventions, are evaluated. To verify whether retrofit strategies for the considered arch bridges, which were designed for resisting under permanent and service actions, were adequate for earthquake resistance, seismic analyses of the as-built model of the structures have been undertaken. To account for multiple input effects on arches, induced by out-of-phase motions at foundation levels as well as different boundary conditions at structural supports, the seismic response of the structures under correlated horizontal and vertical multiple excitations is calculated. The effects on arch bridges of conventionally used uniform input and partially correlated multiple inputs with phase shifts are compared. In all cases, the results are discussed with particular reference to the influence of structural configuration, secondary systems, cross-section thickness of the arch, and retrofit interventions.  相似文献   

7.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

8.
This paper presents the result of a study on the effect of pounding at expansion joints on concrete bridge response to earthquake ground motions. An engineering approach, rather than continuum mechanics approach, is emphasized. First, the dynamic behavior of a damped multidegree-of-freedom bridge system separated by an expansion joint involving an impact is examined by means of the finite element method. Second, the sensitivity analysis of the stiffness in gap elements is performed. Third, usefulness of the analysis method for simulation of pounding phenomena is demonstrated and the effect of pounding on the ductility demands measured in terms of the rotation of column ends is investigated. Two-dimensional finite element analysis using a bilinear hysterestic model for bridge substructure joints and a nonlinear gap element for the expansion joint is performed on a realistic bridge with an expansion joint. The effects of the primary factors on the ductility demand such as gap sizes and characteristics of earthquake ground motion are investigated through a parametric study. The major conclusions are (1) the effect of impact most directly depends on the size of momentum (or pounding magnitude); and (2) the pounding effect is generally found to be negligible on the ductility demand for wide practical ranges of gap size and peak ground acceleration, but is potentially significant at the locations of impact.  相似文献   

9.
In a paper previously published by the first writer, a procedure for load-rating masonry arch bridges was introduced. The procedure uses the Load Factor Method of the 1994 American Association of State Highway and Transportation Officials Manual for the Condition Evaluation of Bridges, applied to a frame analysis model of a masonry arch spanning from abutment to abutment. The procedure is based on the assumption of the arch barrel having no tensile strength. The objective of this technical note is to complement the initial procedure by enabling the assessing engineer to exercise discretion in deciding whether or not a small value of tensile strength should be allowable in determining a suitable rating for masonry arch bridges. In addition the initially proposed strength values, which are considered overly conservative, are increased. The introduction of these refinements will allow a more accurate assessment of the nation’s stock of stone masonry bridges.  相似文献   

10.
The use of horizontally curved composite multiple-box girder bridges in modern highway systems is quite suitable in resisting torsional and warping effects induced by highway curvatures. Bridge users react adversely to vibrations of a bridge and especially where torsional modes dominate. In this paper, continuous curved composite multiple-box girder bridges are analyzed, using the finite-element method, to evaluate their natural frequencies and mode shapes. Experimental tests are conducted on two continuous twin-box girder bridge models of different curvatures to verify and substantiate the finite-element model. Empirical expressions are deduced from these results to evaluate the fundamental frequency for such bridges. The parameters considered herein are the span length, number of lanes, number of boxes, span-to-radius of curvature ratio, span-to-depth ratio, end-diaphragm thickness, number of cross bracings, and number of spans.  相似文献   

11.
This work describes some of the most interesting aspects of the experimental and numerical dynamic analyses of the Luiz I Bridge, an old arch double-deck iron bridge, when subjected to the moving loads of the new light metro of Porto. Presented are the methodology and computational tools developed, as well as some of the most significant results obtained from numerical simulations conducted on the basis of an experimentally calibrated finite-element model, both in terms of structural safety and of the comfort of pedestrians and train passengers.  相似文献   

12.
Modern approaches to multispan masonry bridges are approximate in many ways: load distribution, masonry degradation, fill-to-barrel, span-to-span, and span-to-pier interaction are taken into account by means of approximate models or are neglected. At the end of the assessment procedure, the approximation to the load carrying capacity of the bridge cannot be easily quantified. In Part I of this paper, an extension of the classical approach to masonry arches was formulated taking into account the nonlinear response of masonry, a limit to compressive inelastic strains, and assuming simplifying but conservative assumptions. The procedure allows the analysis of multispan masonry bridges considering the nonlinear response of arches and barrels and the mutual interaction. The response of two- and three-span prototypes is compared to that of a single arch; then the procedure is applied to a six- 18.5-m span in-service viaduct. A detailed comparison with the single-span-bridge approach is discussed. Specific attention is paid to the evolution of the collapse mechanism and to the effect of load distribution, addressing the concentrated loads versus distributed equivalent loads problem and showing how the limit to compressive inelastic strains, i.e., to masonry ductility, may be of great importance to the structural analysis of masonry bridges.  相似文献   

13.
A stepwise iterative procedure for the nonlinear analysis of multispan arch bridges, suitable for implementation by standard programming of commercial finite element codes, is discussed. Relying on the plane section hypothesis, masonry is assumed elastic-perfectly plastic in compression and no tensile resistant; a collapse condition is found when an ultimate strain is reached. The iterative procedure is that of an elastic prevision and subsequent nonlinear correction of the nodal forces: tensile stresses are not allowed in the mortar joint by adapting the effective height of the arch to its compressed part, while the plastic response is represented by additional external fictitious forces accounting for the compressive plastic plateau. The procedure is first tested by comparison with experimental data and then applied to sample bridges, pointing out how the collapse mechanism and the ultimate load depend on the geometric and mechanical parameters.  相似文献   

14.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge.  相似文献   

15.
The live load structural capacity of open-spandrel arch bridge structures is difficult to quantify. In addition to live and dead loads, geometric nonlinear effects, temperature effects, and material behavior play key roles in the design and load rating of such a structure. This paper is a case study that illustrates the effect these variables have on load rating a two-span shallow concrete arch bridge. Presented are load ratings of the structure’s arch ribs using a three-dimensional finite-element model with American Association of State Highway and Transportation Officials publications. As a result of this study, a refined analysis is recommended for load rating arch bridges.  相似文献   

16.
An innovative approach for damage assessment of a bridge deck is proposed with the measured dynamic response of a vehicle moving on top of a structure. The simply supported bridge deck is modeled as a Euler–Bernoulli beam. The moving vehicle serves as a smart sensor and force transducer in the structural system. The damage is defined as the flexural stiffness reduction in the beam finite element. The identification algorithm is based on dynamic response sensitivity analysis, and it is realized with a regularization technique from the measured vehicle acceleration measurement. Measurement noise, road surface roughness, and model errors are included in the simulations, and the results indicate that the proposed algorithm is computationally stable and efficient, and the identified results are acceptable and not sensitive to the different parameters studied.  相似文献   

17.
A curved, three-span continuous, steel I-girder bridge in Salt Lake City was tested in order to determine its dynamic and static load carrying properties for three boundary condition states. For each of the three boundary condition states, two dynamic forced vibration methods were applied to the bridge as well as a static live-load test. The first forced vibration method used an eccentric mass shaker. The second method involved striking the side of the bridge with an impact hammer. The live-load test was performed by slowly driving a truck at a crawl speed across the bridge. Velocity transducers, accelerometers, and strain gauges were utilized to record the response of the bridge. The analysis and compilation of recorded dynamic response of the bridge enabled the preparation of mode shapes and natural frequencies for each boundary condition. This paper discusses the resulting changes in relevant dynamic properties and compares them with the changes in the static properties that were determined from the bridge response recorded from the live-load tests.  相似文献   

18.
New designs of precast bridge parapets made with fiber-reinforced concrete (FRC) were developed using nonlinear finite-element calculations. Specific properties of high- and ultrahigh-performance FRC were exploited in these designs. The conventional reinforcement required in the FRC precast parapets varied from 0 to 50% when compared with a reference built-on-site parapet. An extensive experimental program was carried out to verify the performance of the FRC precast parapets. The parapet mechanical behavior was established under quasi-static tests and under dynamic loading replicating a vehicle impact. The results of the quasi-static tests indicate that precast FRC parapets possess the required strength and have ductility comparable to reference parapets. Quasi-static tests carried out after the dynamic tests indicate that the residual strength of the parapets corresponds to 75 to 100% of their original capacity. The finite-element model adopted in the project satisfactorily reproduced the strength, stiffness, and failure mode of the parapets. Finally, the system efficiency of precast FRC parapets was established for their application in a typical urban bridge project, considering the mechanical performance, the fabrication costs, and the required installation time.  相似文献   

19.
This paper develops a simplified method using a summation procedure and a related computer program to calculate the time-dependent behavior of a concrete filled steel tubular (CFST) arch bridge based on the geometric compatibility principle, a step-by-step time incremental process, and self-equilibrium equations. An experimental test on a scaled (1:5) segmental model of the main arch ribs of the Maocaojie Bridge was used to confirm the effectiveness of the proposed calculation method for evaluating the long-term behavior of CFST arch bridge under sustained load. It is concluded that: (1) the numerical results were in good agreement with the experimental results, demonstrating that the proposed analytical model is capable of predicting long-term effects for CFST arch bridges; (2) the stresses in the steel tubes increased, and the compressive stresses in the concrete decreased due to the effects of concrete creep and shrinkage. The maximum relaxation of the compressive stress in concrete due to concrete creep was 52.7% of the initial concrete stress, and the maximum increase of stress in the steel tubes was 27.3%; and (3) more than 90% of the total creep of the concrete took place in the first year. Subsequent creep of the concrete was limited because of the lack of water exchange between the structure and atmosphere and the reduction of compressive stress in the concrete.  相似文献   

20.
This paper describes an arch type steel footbridge, its analytical modeling, modal testing, finite-element model updating, and dynamic analysis. A modern steel footbridge which has an arch type structural system and is located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed three-dimensional finite-element model of footbridge to provide analytical frequencies and mode shapes. Field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies, mode shapes, and damping ratios are determined. The finite-element model of the footbridge is updated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modeling parameters such as material properties. Dynamic analyses of the footbridge before and after finite-element model updating are performed using the 1992 Erzincan earthquake record. At the end of the study, maximum differences in the natural frequencies are reduced from 22 to only 5% and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies and mode shapes by model updating. Also, maximum displacements and principal stresses before and after model updating are compared with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号