共查询到20条相似文献,搜索用时 121 毫秒
1.
2.
3.
为把数字万用表、绝缘电阻表、漏电开关测试仪等三种功能的测量仪器,合并为一种新型手持式测量仪表。采用专用集成电路ES51921和高性能微控制器MSP430F2111及外部扩展电路、液晶显示器(LCD)等组成,将多功能测试仪设计成具有多功能、智能化的特点和显示直观、读数精准、功能完善、耗电省、体积小、易于携带等优点。该多功能测试仪经测试符合相关技术标准。 相似文献
4.
DDS在数字频率特性测试仪中的应用 总被引:1,自引:0,他引:1
介绍了DDS的基本原理,并给出了以DDS为基础的用于数字频率特性测试仪中的扫频信号源的设计与实现方法,该设计已通过实验验证并取得了良好的效果. 相似文献
5.
<正> 在工程测量和电路设计中,常常需要测量各种线圈的电感量。许多自己动手绕制的电感线圈也需要测量其电感值。通常测量电感要用Q表或LCR测试仪来测量,但这些仪表、仪器一般只有单位科研部门才有。能否用万用表来测量电感呢?下面介绍一种无需改动万用表任何结构,测量也很简便,就是用数字万用表的电容挡来测量电感。下面以常用的DT930F或DT890B型数字万用表为例来说明测量电感的原理及方法。 DT930F和DT890B型数字万用表的电容测量电路如附图所示。电路中使用两片LM358双运放。其中IC6a构成文氏电桥振荡器,四个桥臂分别为R15和C16、R16和C15、R17、R18,输出的正弦波信号频率fo=1/2π(R15·R16·C15·C16~(1/2))≈400Hz,该振荡信号经IC6a和IC6b两级放大后,从IC6b①脚 相似文献
6.
7.
《电子技术与软件工程》2017,(2)
为了有效改进矿井设备安全检测的自动化程度,研究人员研制出了一款数字测试仪。这款测试仪可以同时连接32路传感器,通过传感器传入的数据会被信号采集器快速采集,并且传递到PC机上。PC机会根据传入的数据生成工作人员所需要的表格。利用数字测试仪可以提升四种矿井设备的安全检测,提高检测时的精度,实现矿井安全检测的自动化。 相似文献
8.
9.
数字移动通信系统已经在我国迅速发展。由于它具有频谱利用率高、能支持多种通信业务、成本低、体积小、重量轻等优点,必将取代模拟移动通信系统。用于数字移动通信设备研究开发、生产测试和维护的数字无线通信测试仪也必将为人所关注,本文对国外一些仪器生产厂商先后推出的数字无线通信测试仪的主要特点和用途作一介绍。 相似文献
10.
11.
12.
本文介绍可用于测量流体流速、密度、流量等指标的一种新型科里奥利质量流量计及其数字部分的设计与实现。为了提高测量精度 ,减小硬件规模、功耗 ,使用了PLD(ProgrammableLogicDe vice)器件设计仪器电路 ,使测量精度达到 1 .2‰ ;数字部分仪器电路板缩小到 90× 1 60mm。仪器在实际应用中取得了较好的效果。 相似文献
13.
一种兼容微处理器指令译码单元的优化设计 总被引:1,自引:1,他引:0
针对与X86微处理器兼容的32位微处理器,研究设计了一种指令译码器。X86指令集结构复杂,串行译码方式实现简单,效率不高。本文在没有更改处理器体系结构的基础之上,把译码过程分成两个步骤,用多个译码部件实现并行译码.并简要证明方案的可行性。最后用VHDL硬件描述语言实现了设计思想,能够单拍译出一条不带前缀的指令,提高了译码效率。 相似文献
14.
介绍了一种利用数字调制芯片HSP50215设计和实现的高速数字调制系统,它可以对数字信号进行多种方式的调制,如BPSK,QPSK,OQPSK,MSK或m-QAM。本系统可以用于有线电视信道中各种数字传输方式的研究,稍加修改也可以作为有线电视数字机顶盒或电缆modem系统的调制发送模块。 相似文献
15.
以超混沌电感电容(LC)振荡电路模型为对象,提出了一种线性和非线性混合反馈同步通信方案。通过设计李雅普诺夫函数对系统同步的稳定性进行了理论分析,得出了稳定状态下系统反馈强度的临界值。同时,基于线性和非线性混合反馈同步方式,研究了信号的注入式混沌保密通信方法。该方法不仅增强了通讯的保密性,而且对噪声有较强的鲁棒性,因而具有较好的工程应用价值。 相似文献
16.
A newly devised inductance-oscillator (iOSC) has been developed which evaluates inductance impact on on-chip wire delay. iOSC is a ring oscillator which is comprised of a set of wires each with different loop inductance and accurate on-chip counter. The equivalent distance to the nearest ground grid, which serves as the current return path, is varied to control wire inductance.A test chip using 0.13-m node process is fabricated to demonstrate concept of the iOSC. Four wire structures are implemented as imperfect coplanar waveguide, imitating clock lines or high-frequency global signal lines. The structure with largest inductance variation measured 99 ps delay difference while newly proposing twisted ground structure which has small inductance variation measured 6 ps both for 3-mm wires. This experiment also provides designers with a guideline for ground density from inductance standpoint. iOSC confirms that the inductance impact on delay has to be adequately analyzed and controlled to estimate a timing in high-speed LSI designs.Takashi Sato (M98) received the B.E. and M.E. degrees in mineral resource engineering and material science engineering from Waseda University, Tokyo, Japan, in 1989 and 1991, respectively. From 1991 to 1995, he worked for the Central Research Laboratory, Hitachi, Ltd. Tokyo, Japan, where he was engaged in the design and development of analog circuit simulator. Since 1995, he has been with Semiconductor&Integrated Circuits, Hitachi, Ltd., where he has been working on high-speed processor—memory interface circuits. Since 2002, he is also with Kyoto University working towards Ph.D. degree. He was a Visiting Industrial Fellow at the University of California, Berkeley, from 1998 to 1999.His research interests include analog circuit simulation techniques, on-chip and on-board interconnection modeling, signal and power supply integrity analysis, and their application to high speed interface circuits. Mr. Sato is a member of the Institute of Electrical and Electronics Engineers and the Institute of Electronics, Information and Communication Engineers of Japan. He received the 2000 Beatrice Winner Award at International Symposium on Solid-State Circuit (ISSCC) and Best PaperAward at 2003 IEEE International Symposium on Quality Electronic Design (ISQED).Hiroo Masuda received the B.S. degree in applied physics and Dr. of Engineering in electric system from Tokyo Institute of Technology, Tokyo, in 1970 and 1979, respectively.In 1970, he joined Central Research Laboratory, Hitachi, Ltd., Tokyo, Japan. He initially engaged in research and development of a 3 m MOS device and process. From 1975 he joined MOS memory group and developed a 64 K Dynamic Memory. From 1981 to 1982 he was a Visiting Scholar at the University of Michigan, Ann Arbor. From 1982 to 1991, he was with Central Research Laboratory, Hitachi, Ltd., where he worked on semiconductor device simulation and modeling. From 1991 to 2000, he is with Device Development Center, Hitachi Ltd., where he worked on Computer Aided Engineering for VLSIs, including TCAD (Technology CAD) application methodology and statistical yield modeling and metrology. Since 2000, He is with STARC (Semiconductor Technology Academic Research Center), TechnologyDevelopment Department, Physical Design Group as a Senior Manage, where he is engaged in research and development works on physical design issues for DSM (deep submicron) VLSIs.Dr. Masuda is senior member of the Institute of Electrical and Electronics Engineers Inc., and a member of the Japan Society of Applied Physics and Institute of Electronics, Information and Communication Engineers of Japan. 相似文献
17.
18.
本文介绍了一种在微处理器中用二进制定点运算和查表相结合的方法简单实现三角函数和反三角函数运算的方法。与浮点运算方法相比,可大大提高微处理器的运算速度。 相似文献
19.