首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capacitively coupled shortwave radiofrequency fields (13.56 MHz) resistively heat low concentrations (∼1 ppm) of gold nanoparticles with a thermal power dissipation of ∼380 kW/g of gold. Smaller diameter gold nanoparticles (< 50 nm) heat at nearly twice the rate of larger diameter gold nanoparticles (≥50 nm), which is attributed to the higher resistivity of smaller gold nanostructures. A Joule heating model has been developed to explain this phenomenon and provides critical insights into the rational design and engineering of nanoscale materials for noninvasive thermal therapy of cancer. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. These two authors made an equal contribution to the work.  相似文献   

2.
We report synthesis windows for growth of millimeter-long ZnTe nanoribbons and ZnSe nanowires using vapor transport. By tuning the local conditions at the growth substrate, high aspect ratio nanostructures can be synthesized. A Cu-ion immersion doping method was applied, producing strongly p-type conduction in ZnTe and ionic conduction in ZnSe. These extreme aspect ratio wide-bandgap semiconductors have great potential for high density nanostructured optoelectronic circuits.   相似文献   

3.
We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (∼108), low drain-induced barrier lowering (∼30 mV) and low subthreshold swing (∼80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (∼148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications.   相似文献   

4.
A new technique to reduce the influence of metallic carbon nanotubes (CNTs)—relevant for large-scale integrated circuits based on CNT-nanonet transistors—is proposed and verified. Historically, electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors; however, the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory. Here, we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called “striping”; this allows fabrication of transistors with ON/OFF ratio >1000 and ON-current degradation no more than a factor of 2. We offer first principle numerical models, experimental confirmation, and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.   相似文献   

5.
We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface. Unique outer rings with concentric inner holed rings were observed. Further, an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established. The contour line generated by the equation provides physical insights into quantum ring formation by droplets of group III materials on III–V substrates.   相似文献   

6.
A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments. This article is published with open access at Springerlink.com  相似文献   

7.
We report a facile approach to synthesize narrow and long graphene nanoribbons (GNRs) by sonochemically cutting chemically derived graphene sheets (GSs). The yield of GNRs can reach ∼5 wt% of the starting GSs. The resulting GNRs are several micrometers in length, with ∼75% being single-layer, and ∼40% being narrower than 20 nm in width. A chemical tailoring mechanism involving oxygen-unzipping of GSs under sonochemical conditions is proposed on the basis of experimental observations and previously reported theoretical calculations; it is suggested that the formation and distribution of line faults on graphite oxide and GSs play crucial roles in the formation of GNRs. These results open up the possibilities of the large-scale synthesis and various technological applications of GNRs.   相似文献   

8.
We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of ∼90% for a NW density of ∼20–25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%–95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.   相似文献   

9.
Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.   相似文献   

10.
Chemistry gives us the ability to manipulate atoms and molecules into nanometer and micrometer scale building blocks, while the science of crystallography is concerned with the spatial arrangement of atoms, ions, and molecules and thus the morphology and structures of materials. Complex three-dimensional ZnS nanostructures have been fabricated via step-by-step crystallographically-controlled chemical processes. Tricrystals of ZnS whiskers were prepared via a controlled thermal evaporation process, and then the tricrystals were thermally treated in an atmosphere formed by evaporating B-N-O precursors into N2/NH3 to afford BN-coated arrays of nanobranches. The ZnS nanobranches grew epitaxially on the ternary facets and extended in three [0001] directions forming ordered nanostructures. Meanwhile, the protecting insulating sheath of BN formed on the ZnS nanostructures confined the growth of the nanospines and enhanced their stability. The method may be extended to fabricate other semiconductor nanomaterials with novel structures.   相似文献   

11.
Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ∼900 °C or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.   相似文献   

12.
Working with a biased atomic force microscope (AFM) tip in the tapping mode under ambient atmosphere, attoliter (10−18 L) water droplet patterns have been generated on a patterned carbonaceous surface. This is essentially electrocondensation of water leading to charged droplets, as evidenced from electrostatic force microscopy measurements. The droplets are unusual in that they exhibit a highly corrugated surface and evaporate rather slowly, taking several tens of minutes.   相似文献   

13.
We present an interplay of high-resolution scanning tunneling microscopy imaging and the corresponding theoretical calculations based on elastic scattering quantum chemistry techniques of the adsorption of a gold-functionalized rosette assembly and its building blocks on a Au(111) surface with the goal of exploring how to fabricate functional 3-D molecular nanostructures on surfaces. The supramolecular rosette assembly stabilized by multiple hydrogen bonds has been sublimed onto the Au(111) surface under ultra-high vacuum conditions; the resulting surface nanostructures are distinctly different from those formed by the individual molecular building blocks of the rosette assembly, suggesting that the assembly itself can be transferred intact to the surface by in situ thermal sublimation. This unanticipated result will open up new perspectives for growth of complex 3-D supramolecular nanostructures at the vacuum-solid interface. This article is published with open access at Springerlink.com  相似文献   

14.
Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nanocarriers for biomedical, drug delivery and sensing applications. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
The controlled tailoring of the energy distribution in an electron system opens the way to interesting new physics and device concepts, as demonstrated by research on metallic nanodevices during recent years. Here we investigate how Josephson coupling in a superconductor-InAs nanowire junction can be tuned by means of hot-electron injection and we show that a complete suppression of superconductive effects can be achieved using a power as low as 100 pW. Nanowires offer a novel design freedom as they allow axial and radial heterostructures to be defined as well as control over doping profiles, which can be crucial in the development of devices—such as nanorefrigerators—where precisely controlled and predictable energy barriers are mandatory. Our work provides estimates for unknown key thermal and electrical parameters, such as the electron-phonon coupling, in our InAs nanostructures.   相似文献   

16.
The production of high quality single-walled carbon nanotubes (SWCNTs) on a bulk scale has been an issue of considerable interest. Recently, it has been demonstrated that high quality SWCNTs can be continuously synthesized on large scale by using induction thermal plasma technology. In this process, the high energy density of the thermal plasma is employed to generate dense vapor-phase precursors for the synthesis of SWCNTs. With the current reactor system, a carbon soot product which contains approximately 40 wt% of SWCNTs can be continuously synthesized at the high production rate of ∼100 g/h. In this article, our recent research efforts to achieve major advances in this technology are presented. Firstly, the processing parameters involved are examined systematically in order to evaluate their individual influences on the SWCNT synthesis. Based on these results, the appropriate operating conditions of the induction thermal plasma process for an effective synthesis of SWCNTs are discussed. A characterization study has also been performed on the SWCNTs produced under the optimum processing conditions. Finally, a mathematical model of the process currently under development is described. The model will help us to better understand the synthesis of SWCNTs in the induction plasma process.   相似文献   

17.
Singled-walled carbon nanotubes (SWNTs), in the form of ultrathin films of random networks, aligned arrays, or anything in between, provide an unusual type of electronic material that can be integrated into circuits in a conventional, scalable fashion. The electrical, mechanical, and optical properties of such films can, in certain cases, approach the remarkable characteristics of the individual SWNTs, thereby making them attractive for applications in electronics, sensors, and other systems. This review discusses the synthesis and assembly of SWNTs into thin film architectures of various types and provides examples of their use in digital electronic circuits with levels of integration approaching 100 transistors and in analog radio frequency (RF) systems with operating frequencies up to several gigahertz, including transistor radios in which SWNT transistors provide all of the active functionality. The results represent important steps in the development of an SWNT-based electronics technology that could find utility in areas such as flexible electronics, RF analog devices and others that might complement the capabilities of established systems. This article is published with open access at Springerlink.com  相似文献   

18.
Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic field. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (∼330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along 〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for field parallel to the wire axis is evident from the peculiar high field M(T) curve.   相似文献   

19.
We demonstrate the feasibility of using a carbon nanotube to nanopump molecules. Molecular dynamics simulations show that the transport and ejection of a C20 molecule via a single-walled carbon nanotube (SWNT) can be achieved by a sustained mechanical actuation driven by two oscillating tips. The optimal condition for nanopumping is found when the tip oscillation frequency and magnitude correlate to form quasi steady-state mechanical wave propagation in the SWNT, so that the energy transfer process is optimal leading to maximal molecular translational motion and minimal rotational motion. Our finding provides a potentially useful mechanism for using an SWNT as a vehicle to deliver large drug molecules.   相似文献   

20.
Wu  Xiangshui  Tao  Qiqi  Li  Da  Wang  Qilang  Zhang  Xiaoyan  Jin  Huile  Li  Jun  Wang  Shun  Xu  Xiangfan 《Nano Research》2021,14(12):4725-4731

Tellurene, probably one of the most promising two-dimensional (2D) system in the thermoelectric materials, displays ultra-low thermal conductivity. However, a linear thickness-dependent thermal conductivity of unique tellurium nanoribbons in this study reveals that unprecedently low thermal conductivity can be achieved via well-defined nanostructures of low-dimensional tellurium instead of pursuing dimension-reduced 2D tellurene. For thinnest tellurium nanoribbon with thickness of 144 nm, the thermal conductivity is only ∼1.88 ± 0.22 W·m−1·K−1 at room temperature. It’s a dramatic decrease (45%), compared with the well-annealed high-purity bulk tellurium. To be more specific, an expected thermal conductivity of tellurium nanoribbons is even lower than that of 2D tellurene, as a result of strong phonon-surface scattering. We have faith in low-dimensional tellurium in which the thermoelectric performance could realize further breakthrough.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号