首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We have synthesized MgO/SiOx core-shell nanorods by employing a sputtering technique with a Si target, for sheathing the MgO nanorods. The samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and photoluminescence (PL) spectroscopy. The SiOx shell was close to amorphous, whereas the MgO core was crystalline with a cubic structure. The shape and peak positions of the PL spectrum were not changed by the coating.  相似文献   

2.
Y(NO3)3 and NH3·H2O were used as a raw materials,and nano-Y2O3 powder was successfully synthesized by a precipitation method.Employing TEOS as a raw material,SiO2 powder was successfully prepared by a alkoxide-hydrolysis method,and a Y2O3/SiO2 composite powder was obtained by coating.The Y2O3,SiO2,and Y2O3/SiO2 powders were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),and Fourier transform infrared spectrophotometer(FT-IR);the Y2O3 and Y2O3/SiO2 powders were further examined ...  相似文献   

3.
A series of red-emitting Ca2-xAl2SiO7:xEu3+(x = 1 mol.%-10 mol.%) phosphors were synthesized by the sol-gel method.The effects of annealing temperature and doping concentration on the crystal structure and luminescence properties of Ca2Al2SiO7:Eu3+ phosphors were investigated.X-ray diffraction(XRD) profiles showed that all peaks could be attributed to the tetragonal Ca2Al2SiO7 phase when the sample was annealed at 1000℃.Scanning electron microscopy(SEM) micrographs indicate that the phosphors have an irregularly rounded morphology with particles of about 200 nm.Excitation spectra showed that the strong broad band at around 258 nm and weak sharp lines in 350-490 nm were attributed to the charge transfer band of Eu3+-O2-and f-f transitions within the 4f6 configuration of Eu3+ ions,respectively.Emission spectra implied that the red luminescence could be attributed to the transitions from the 5D0 excited level to the 7FJ(J = 0,1,2,3,4) levels of Eu3+ ions with the main electric dipole transition 5D0→7F2(618 and 620 nm),and Eu3+ ions prefer to occupy a lower symmetry site in the crystal lattice.Moreover,the photoluminescence(PL) intensity was strongly dependent on both the sintering temperature and doping concentration,and the highest PL intensity was observed at an Eu3+ concentration x = 7 mol.% after annealing at 1100℃.The obtained Ca2Al2SiO7:Eu3+ phosphor may have potential application for the red lamp phosphor.  相似文献   

4.
Nitrogen oxides (NOx) and carbon monoxide (CO) are among the most dangerous chemical species to human health present in the atmosphere. Acute CO toxicity leading to unconsciousness, respiratory failure or death can occur after 1 hr of exposure when ambient CO levels reach 1000 ppm, whilst increase of NOx emissions can contribute to acid deposition, pollution of groundwater, eutrophication of surface waters, and tropospheric ozone and ecosystem damage. In this work, pure SnO2 sensors for CO and NOx were prepared by spin coating solutions derived from a washed Gel-precipitate followed by a calcining step. SnO2 sensors of nanometer grain size prepared by this process showed good sensitivity to CO and NOx gases. The increase of calcining temperature not only affected grain size and surface morphology, but also caused a decrease in sensitivity of the SnO2 sensors.  相似文献   

5.
Core–shell nanostructured magnetic Fe3O4@SiO2 with particle size ranging from 3 nm to 40 nm has been synthesized via a facile precipitation method. Tetraethyl orthosilicate was employed as surfactant to prepare core–shell structures from Fe3O4 nanoparticles synthesized from pomegranate peel extract using a green method. X-ray diffraction analysis, Fourier-transform infrared and ultraviolet–visible (UV–Vis) spectroscopies, transmission electron microscopy, and scanning electron microscopy with energy-dispersive spectroscopy were employed to characterize the samples. The prepared Fe3O4 nanoparticles were approximately 12 nm in size, and the thickness of the SiO2 shell was?~?4 nm. Evaluation of the magnetic properties indicated lower saturation magnetization for Fe3O4@SiO2 powder (~?11.26 emu/g) compared with Fe3O4 powder (~?13.30 emu/g), supporting successful wrapping of the Fe3O4 nanoparticles by SiO2. As-prepared powders were deposited on carbon fibers (CFs) using electrophoretic deposition and their electrochemical behavior investigated. The rectangular-shaped cyclic voltagrams of Fe3O4@CF and Fe3O4@C@CF samples indicated electrochemical double-layer capacitor (EDLC) behavior. The higher specific capacitance of 477 F/g for Fe3O4@C@CF (at scan rate of 0.05 V/s in the potential range of ??1.13 to 0.45 V) compared with 205 F/g for Fe3O4@CF (at the same scan rate in the potential range of?~???1.04 to 0.24 V) makes the former a superior candidate for use in energy storage applications.  相似文献   

6.
SnO2 thin films prepared by reactive rf magnetron sputtering have been investigated to examine the effect of deposition parameters on its crystallinity and electrical and optical properties. Of particular interest was whether the nonequilibrium nature of sputtering could create large departures from the bulk defect properties, especially in amorphous films. Two deposition parameters were examined: substrate temperature (Tsub) and oxygen content. The films were characterized by X-ray diffraction (XRD), optical transmission, four point probe electrical conductivity, and Hall effect measurements. The crystallinity was found to be enhanced by the incease in each of the three processing variables. Below a substrate temperature of 300 °C a large processing window for depositing amorphous SnO2 was found.  相似文献   

7.
Differential thermal analysis/theromgravimetry (DTA/TG) measurements performed in air have established that above 1273 K the SnO2-CuO initially stochiometric system transforms into a system of the SnO2-CuOx type, with the value of x depending on temperature T and p O 2 oxygen partial pressure values. The dissociation process of CuO to Cu2O, as well as the formation of a liquid phase with an uptake of oxygen, has been experimentally verified. Above the minimum value of the oxygen partial pressure for which the only components of the system are SnO2 and CuO (i. e., over pO 2 = 24 atm), the phase diagram was calculated by modeling the behavior of the liquid phase with a sub-regular approximation. A homogeneous liquid phase with no tendency toward immiscibility was found to be energetically favorable over the entire compositional range of the SnO2-CuO system for T ≥ 1470 K. As a result of the calculations, the phase diagram is given for pO 2 = 24 atm; the diagram is a simple eutectic type with the eutectic composition placed in the CuO-rich domain (i.e., copper oxide molar fraction x = 0.873 and melting at 1470 K). The phase diagram calculated for the SnO2-CuO system is compared with the data reported for other CuO-based systems.  相似文献   

8.
The inherent drawbacks of Co2SnO4 in demonstrating the closer-to-theoretical capacity value behavior and the inadmissible volume-expansion-related capacity fade behavior have been surpassed by choosing a tailor-made material composition of Co2SnO4/SnO2, prepared at two different temperatures such as 400°C and 600°C to obtain residual carbon-containing and carbon-free compositions, respectively. Among the products, carbon-coated Co2SnO4/SnO2 composite exhibits better electrochemical performance compared with that of the carbon-free product mainly because of the beneficial effect of carbon in accommodating the volume-expansion-related issues arising from the alloying/de-alloying mechanism. A combination of conversion reaction and alloying/de-alloying mechanism is found to play a vital role in exhibiting closer-to-theoretical capacity values. In other words, an appreciable specific capacity value of 834 mAh g?1 has been exhibited by Co2SnO4/SnO2 anode containing carbon coating, thus, demonstrating the possibility to improve the electrochemical performance of the title anode through carbon coating, which is realized as a result of the addition of carefully manipulated synthesis conditions.  相似文献   

9.
Thin TiO2 layers grown at 130°C on SiO2-coated Si substrates by atomic layer deposition (ALD) using TTIP and H2O as precursors were annealed, and the effects of the annealing temperature on the resulting electrical properties of TiO2 and the interface properties between a Pt electrode and TiO2 were examined using transmission line model (TLM) structures. The as-deposited TiO2 thin film had an amorphous structure with OH groups and a high resistivity of 6×103Ω-cm. Vacuum annealing at 700 °C transformed the amorphous film into an anatase structure and reduced its resistivity to 0.04Ω-cm. In addition, the vacuum-annealing of the TiO2/SiO2 structure at 700°C produced free silicon at the TiO2-SiO2 interface as a result of the reaction between the Ti interstitials and SiO2. The SiO2 formed on the TiO2 surface caused a Schottky contact, which was characterized by the TLM method. The use of the TLM method enabled the accurate measurement of the resistivity of the vacuum-annealed TiO2 films and the characterization of the Schottky contacts of the metal electrode to the TiO2.  相似文献   

10.
In this study, we have coated tin oxide (SnO2) nanowires with a Cu shell layer via the sputtering method and subsequently investigated the effects of thermal annealing. The annealing-induced changes in morphologies, microstructures, and compositions of the resulting core-shell nanowires were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energydispersive X-ray spectroscopy (EDX). The Cu shell layers were agglomerated to form clusters, which were mainly comprised of the Cu2O phase. For the first time, a hysteresis loop indicating weak ferromagnetism was observed from the pure SnO2 nanowires. Both the coercivity and the retentivity in the hysteresis loop were slightly increased by Cu-sputtering, indicating a very slight enhancement of ferromagnetism. Also, the ferromagnetic behavior was significantly enhanced by thermal annealing. We discuss the possible mechanisms of annealing-induced enhancement of ferromagnetism in the SiO2/Cu core-shell nanowires, which include the generation of Cu2O phase, Cu-doping into the SnO2 lattice, and the generation of oxygen vacancies in SnO2 core nanowires.  相似文献   

11.
Large-scale single-crystalline SnO2 nanocauliflowers were successfully synthesized using a hydrothermal growth method without any template. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). FE-SEM images show that the as-grown SnO2 nanocauliflowers are constructed of tetragonal prisms with a width of 500–600 nm. XRD, EDS, and SAED results indicate that the as-grown SnO2 nanocauliflowers are single crystalline with the tetragonal rutile crystalline structure. The growth mechanism of SnO2 nanocauliflowers is also preliminarily discussed on the basis of different Sn(OH)62− concentrations, and it is found that Sn(OH)62− concentration plays an important role in determining the shape of the prepared SnO2. Room temperature photoluminescence was further carried out on SnO2 nanocauliflowers to investigate their optical properties. An intense blue luminescence centered at a wavelength of 424 nm is observed in the as-grown SnO2 nanocauliflowers.  相似文献   

12.
In this paper, HfNx-based films on SiO2/Si stack were grown by metal organic chemical vapor deposition (MOCVD), and one of them was ex-situ annealed at elevated temperature. The structural parameters of HfNx-based films for the as-grown and the post-growth annealing samples were characterized by Rutherford back-scattering spectrometry (RBS), Spectroscopic Ellipsometry (SE) and atomic force microscopy (AFM). The measurements of the post-growth annealing sample by RBS demonstrated that the N: Hf ratio of HfNx-based films would decrease with depth increase. In addition, The SE results for the structure of HfNx-based nitride films were in good agreement with those determined by RBS.  相似文献   

13.
Au-Pt/SnO2/GC composite electrode was prepared by self-assembling Au-Pt nanoparticles on SnO2 film, which was deposited on actived glassy carbon (GC). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images revealed that dense and uniform Au-Pt particles with 25-nm diameter were dispersed on SnO2 film. X-ray photoelectron spectroscopy (XPS) results proved that there was an interaction between Au-Pt nanoparticles and SnO2 support. Electrochemical experiments showed that Au-Pt/SnO2/GC composite electrode had a good electrocatalytic activity to the oxidation of methanol.  相似文献   

14.
We have calculated the electronic structures of Co2FeAl1-xSix(101) surface using first-principles method based on the density functional theory. Because of the surface effect, the minority spin band gap at the Fermi level disappears at the surface of bulk Co2FeAl1-xSix. However, beneath the surface, the minority spin gap opens at the Fermi level, which indicates that the electronic structures of Co2FeAl1-xSix(101) be-come close to that of bulk phase. Accordingly, the Co2FeAl1-xSix(101) surface is a composite tri-layer structure that corresponds to the weakening of half-metallic property in Co2FeAl1-xSix films. Even though, the spin polarization of Co2FeAl1-xSix(101) surface is still larger than that of Co2FeAl or Co2FeSi materials, making Co2FeAl1-xSix a promising spintronics material.  相似文献   

15.
The (La0.7Ca0.3MnO3)1x /(NiFe2O4) x (x = 0 to 0.09) composites were prepared using a conventional solid state reaction method. The structural, magnetic properties, and electrical properties of LCMO/NFO composites were investigated using X-ray diffraction, scanning electron microscopy, field cooled DC magnetization, and magnetoresistance (MR) measurements. The resistivity measured as a function temperature demonstrates that the pure LCMO and x = 0.01 samples display metal to semiconductor transitions. However, the composites of x > 0.03 samples clearly present the electrical behavior as an insulator/semiconductor type behavior. It was observed that the resistivity of the samples increased systemically with an increase of the NFO content. From the MR measurements, it was found that the MR effect is enhanced for x = 0.01 with a NFO composition. In all, the spin-polarized tunneling and the spin-dependent scattering may be beneficial for an improved low-field magnetoresistance effect. These phenomena can be explained by the segregation of a new phase related to NFO at the grain boundaries or surfaces of the LCMO grains.  相似文献   

16.
Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperature, and the effects of SiO2 and TiO2 on the bending resistance performance of flexible ITO films were investigated. The results show that ITO films with SiO2 or TiO2 buffer layer have better resistance stabilities compared to ones without the buffer layer when the ITO films are inwards bent at a bending radius more than 1.2 cm and when the ITO films are outwards bent at a bending radius from 0.8 cm to 1.2 cm. ITO films with SiO2 buffer layer have better resistance stabilities compared to ones with TiO2 buffer layer after the ITO films are bent several hundreds of cycles at the same bending radius, for the adhesion of SiO2 is stronger than that of TiO2. The compressive stress resulted from inward bending leads to the formation of more defects in the ITO films compared with the tensile stress arising from outward bending. SiO2 and TiO2 buffer layers can effectively improve the crystallinity of ITO films in (400), (440) directions.  相似文献   

17.
SnO2 nanoparticles have been successfully synthesized by a facile hydrothermal method from SnCl2·2H2O, hexamethylenetetramine, and trisodium citrate in water at 120 °C for 12 h. The effects of surfactant and precipitant on SnO2 synthesis were investigated. SnO2 nanoparticles can be synthesized in the temperature range of 120-180 °C with long reaction time in the presence of trisodium citrate. When NaOH was used as precipitant instead of hexamethylenetetramine, it is difficult to obtain SnO2 nanoparticles at 120 °C in the presence of trisodium citrate. SnO2 nanoparticles with an average size of about 5 nm show good crystallinity and excellent sensitivity to ethanol and acetaldehyde in about 55% relative humidity.  相似文献   

18.
We fabricated a micro gas sensor for hydrogen sulfide (H2S) gas using MEMS technology and the sol-gel process, and synthesized SnO2-CuO as a sensing material by the sol-gel method. Synthesized particles of SnO2-CuO were characterized with an average particle size of about 40 nm as measured by FE-SEM imagery and XRD peaks. The sensing material was coated on the micro platform and annealed at 400 °C. The maximum gas sensitivity (Rs= Rg/Ra) was 0.005 at 300 °C for 1.0 ppm — H2S. The gas sensitivity showed linear behavior with increasing H2S concentration.  相似文献   

19.
This study addresses the annealing effects of ZnO/SiOx core-shell nanowire optical properties, in terms of Zn2SiO4 crystallite generation. At 700 °C, the integrated PL intensity of deep-level emission was increased by annealing. With regard to UV emission, free exciton (FX) peak intensity was reduced and the ratio of FX to non-FX peak intensities increased as annealing temperature was increased. These annealing induced changes, including the enhancement of deep-level emission and suppression of FX emission, are mainly related to the generation of Zn2SiO4 crystallites. Transmission electron microscopy revealed that Zn2SiO4 crystallites were formed inside the SiOx shell layer.  相似文献   

20.
La0.7Sr0.3Mn1?x Ni x O3 (x = 0, 0.025, 0.050 and 0.075) ceramics were prepared by the conventional solid-state reaction method. The partial substitution of Mn by Ni2+ leads to a decrease in cell volume as well as a structural transition from the rhombohedral to the orthorhombic structure. Ni2+ doping increases the electrical resistivity, decreases the semiconductor–metal transition temperature (T ms) and relatively enhances the room temperature magnetoresistance (MR), especially in x = 0.025 and around T ms. With respect to conduction mechanism, the small polaron hopping (SPH) and the variable range hopping (VRH) models were used to examine conduction in the semiconducting region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号