首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a test program on a wide range of concrete-filled cold-formed stainless steel tubular T-joints fabricated from square hollow section (SHS) and rectangular hollow section (RHS) brace and chord members. A total of 27 tests was performed. The chord member of the test specimen was filled with concrete along its full length. Both high strength stainless steel (duplex and high strength austenitic) and normal strength stainless steel (AISI 304) specimens filled with nominal concrete cylinder strength of 30 MPa were tested. The axial compression force was applied to the top end of the brace member, which was welded to the center of the chord member. Local buckling failure of brace member was the main failure mode observed during the tests. Hence, the axial compression force was then applied by means of a steel bearing plate to avoid failure of brace member. The failure modes of chord face failure and chord side wall failure as well as crushing of the concrete infill were observed. All the tests were performed by supporting the chord member of the specimen along its entire length to apply the pure concentrated force without any bending moment. The test results were also compared with design rules for carbon steel tubular structures, which is the only existing design guideline for concrete-filled tubular joints. It is shown that the design strengths predicted by the current design rules are quite conservative for the test specimens. It is also recommended that the contribution of stainless steel tubes should be included in the design rules since it has significant effects on the ultimate bearing capacity of concrete-filled stainless steel tubular T-joints.  相似文献   

2.
This paper presents an experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. The high strength stainless steel tubes had a yield stress and tensile strength up to 536 and 961 MPa, respectively. The behaviour of the columns was investigated using different concrete cylinder strengths varied from 40 to 80 MPa. A series of tests was performed to investigate the effects of the shape of the stainless steel tube, plate thickness and concrete strength on the behaviour and strength of concrete-filled high strength stainless steel tube columns. The high strength stainless steel tubes were cold-rolled into square and rectangular hollow sections. The depth-to-plate thickness ratio of the tube sections varied from 25.7 for compact sections to 55.8 for relatively slender sections. The columns had different lengths so the length-to-depth ratio generally remained at a constant value of 3. The concrete-filled high strength stainless steel tube specimens were subjected to uniform axial compression. The column strengths, load-axial strain relationships and failure modes of the columns were presented. The test strengths were compared with the design strengths calculated using the American specifications and Australian/New Zealand standards that consider the effect of local buckling using an effective width concept in the calculation of the stainless steel tube column strengths. Based on the test results, design recommendations were proposed for concrete-filled high strength stainless steel tube columns.  相似文献   

3.
本文给出了冷成型不锈钢方钢管和矩形钢管在腹板屈曲时的设计公式。研究了两种单翼缘加载的情况,一种是端部单翼缘加载,另一种是内部单翼缘加载,此外还研究了内部加载的情况。采用屈服线理论预测了不锈钢管截面的腹板屈曲强度。屈服线理论模型是在试验中观察到的破坏模式的基础上发展起来的。在屈服线模型基础上采用不同的假定,给出了计算冷成型不锈钢方钢管和矩形钢管的腹板屈曲强度的三种设计方法。其中两种腹板屈曲设计方法是完全采用屈服线分析理论推导出来的,另外一种设计方法是综合理论分析和经验分析得到的。将试验得到的腹板屈曲强度和这三种设计方法得到的屈曲强度进行了对比。结果表明采用纯理论推导得到的设计方法计算得到的腹板屈曲设计强度偏于保守,而综合了理论分析和经验分析得到的设计方法其计算的腹板屈曲设计强度值比较合理,可以用于单翼缘受载时冷成型不锈钢管的设计。  相似文献   

4.
The structural performance of cold-formed lean duplex stainless steel columns was investigated. A wide range of finite element analysis on square and rectangular hollow sections and other available data, with a total number of 259 specimens, were considered. An accurate finite element model has been created to simulate the pin-ended cold-formed lean duplex stainless steel columns. Extensive parametric study was carried out using the validated finite element model. The column strengths predicted from the parametric study together with the available data are compared with the design strengths calculated from various existing design rules for cold-formed stainless steel structures. It is shown that the existing design rules, except for the ASCE Specification as well as the stub column and full area approach, are conservative. Modifications are proposed for the AS/NZS Standard, EC3 Code, and direct strength method. Reliability analysis was performed to assess the existing and modified design rules. It is also shown that the modified design rules are able to provide a more accurate and reliable predictions for lean duplex stainless steel columns. In this study, it is suggested that the modified design rules in the AS/NZS Standard and the modified direct strength method to be used in designing cold-formed lean duplex stainless steel columns.  相似文献   

5.
Load introduction in composite columns with concrete filled hollow sections. Composite columns with concrete filled hollow sections combine the advantages of steel and concrete in compression members in an outstanding way, so that they become more and more popular in high rise and multi‐storey buildings. The paper reports about new research and experimental studies, which led to new design models taking into account the effect of partially loaded area and the effect of the restraint by the hollow section. The presented models are the basis for the design rules for the load introduction in composite columns with concrete filled hollow sections in prEN 1994‐1‐1 and DIN 18800‐5.  相似文献   

6.
主办单位:新加坡国立大学 新加坡钢结构协会 钢结构进展国际会议是举办了多年的盛会,第一次到第三次会议在中国香港召开,第四次会议于2005年在中国上海召开。大会旨在为钢结构的科研工作者和工程师们提供一个平台,使他们能够就钢结构、铝结构和组合结构的分析、性能、设计以及施工等方面的最新进展互相交流探讨。  相似文献   

7.
Strength of slender concrete filled high strength steel box columns   总被引:3,自引:0,他引:3  
The use of thin walled steel sections coupled with concrete infill has been used on various building projects with great advantage. The currently available international standards for composite structures are limited to the design of concrete filled steel columns with compact sections. However, there is limited research work in the literature available which is concerned with slender concrete filled thin-walled steel columns. This paper presents a comprehensive experimental study of thin walled steel sections utilising high strength steel of a thin walled nature and filled with normal strength concrete. A numerical model is developed herein in order to study the behaviour of slender concrete filled high strength steel columns incorporating material and geometric non-linearities. For this analysis, the equilibrium of the member is investigated in the deformed state, using the idealised stress–strain relationships for both the steel and concrete materials, considering the elastic and plastic ranges. This paper presents both an experimental and theoretical treatment of coupled local and global buckling of concrete filled high strength steel columns sometimes termed interaction buckling. The experimental results of columns with high strength steel casings conducted herein by the authors are used for comparison. The effect of the confined concrete core is also addressed and the method shows good agreement with the experimental results of concrete filled steel columns with compact sections. The behaviour of concrete filled steel slender columns affected by elastic or inelastic local buckling is also investigated and compared with relevant experimental results. The paper then concludes with a design recommendation for the strength evaluation of slender composite columns using high strength steel plates with thin-walled steel sections, paying particular attention to existing codes of practice so as not to deviate from current design methodologies.  相似文献   

8.
钢板-混凝土空心组合板受力性能与设计方法研究   总被引:1,自引:1,他引:0  
杨勇  李慧静  薛建阳 《工业建筑》2012,42(12):116-120
钢板-混凝土空心组合板是一种新型组合板形式,由下部平钢板、纵向开孔钢板(肋板)、矩形空心内模和上部混凝土面层组合而成。该新型板由于使用空心内模,具有自重轻,隔声,节能的优点,并且具有施工免模板、免临时支撑等特点,具有广泛的应用前景。为研究组合板静力受剪和受弯性能,对6块钢板-混凝土空心组合板试件进行了两点对称集中加载静力试验研究。研究组合板随名义剪跨比变化的破坏形态及受力行为的变化规律。通过试验研究,考察6个组合板试件的破坏形态、钢板与混凝土应变发展情况、裂缝发展情况及组合板承载能力。结果表明:空心组合板具有良好的受力性能,钢板与混凝土组合良好,界面之间无明显滑移;组合板受弯承载能力计算可以采用平截面假定,底部钢板强度可以得到充分发挥;组合板具有较高的受弯承载能力和刚度,并具有良好延性。根据试验研究结果,建立钢板-混凝土组合板受弯承载能力计算公式,为该新型组合板在工程实践中的推广应用提供技术依据和理论支持。  相似文献   

9.
The paper presents a series of tests on cold-formed stainless steel tubular X-joints. The tubular X-joint specimens were tested without chord preload as well as with three different levels of preload applied to the chord members. The test specimens were fabricated from square and rectangular hollow sections as brace and chord members. A total of 32 tests was performed. High strength stainless steel (duplex and high strength austenitic) and normal strength stainless steel (AISI 304) specimens were tested. The test results were compared with the design strengths obtained using the CIDECT Guide and Eurocode for carbon steel structures. It is shown that the design strengths predicted by the current design specifications are very conservative for the test specimens calculated using the 0.1%, 0.2%, 0.5% and 1.0% proof stresses as the yield stresses. The 0.2% proof stress is comparatively more reasonable to predict the design strengths of stainless steel tubular X-joints for both ultimate limit state and serviceability limit state.  相似文献   

10.
Nonlinear analysis of concrete-filled steel SHS and RHS columns   总被引:1,自引:0,他引:1  
Ehab Ellobody  Ben Young   《Thin》2006,44(8):919-930
This paper presents an accurate nonlinear finite element model for the behaviour and design of axially loaded concrete-filled square hollow section (SHS) and rectangular hollow section (RHS) steel tube columns. The nonlinear material models for confined concrete and steel tubes were carefully modeled in the finite element analysis. The column strengths and load-axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled SHS and RHS steel tube columns. The study was conducted over a wide range of concrete cube strengths ranged from 30 to 110 MPa. The overall depth of the steel tube-to-plate thickness ratio ranged from 10 to 40 covering compact SHS and RHS steel tube sections. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results obtained from the parametric study, it is found that the design strengths calculated using the American Specifications and Australian Standards are conservative, while the design strengths calculated using the European Code are accurate, except for the concrete-filled RHS compact steel tube columns having the overall depth of the steel tube-to-plate thickness ratio of 40.  相似文献   

11.
This paper presents an experimental investigation on concrete-filled normal-strength stainless steel stiffened tubular stub columns using the austenitic stainless steel grade EN 1.4301 (304). The stiffened stainless steel tubes were fabricated by welding four lipped angles or two lipped channels at the lips. Therefore, the stiffeners were formed at the mid-depth of the sections. In total, five hollow columns and ten concrete-filled columns were tested. The longitudinal stiffener of the column plate was formed to avoid shrinkage of the concrete and to behave as a continuous connector between the concrete core and the stainless steel tube. The behavior of the columns was investigated using two different nominal concrete cubic strengths of 30 and 60 MPa. A series of tests was performed to investigate the effects of cross-section shape and concrete strength on the behavior and strength of concrete-filled stainless steel stiffened tubular stub columns. The measured average overall depth-to-width ratios (aspect ratio) varied from 1.0 to 1.8. The depth-to-plate thickness ratio of the tube sections varied from 60 to 90. Different lengths of columns were selected to fix the length-to-depth ratio to a constant value of 3. The concrete-filled stiffened stainless steel tubular columns were subjected to uniform axial compression over the concrete core and the stainless steel tube to force the entire section to undergo the same deformations by blocking action. The column strengths, load–axial strain relationships and failure modes of the columns are presented. Several comparisons were made to evaluate the test results. The results of the experimental study showed that the design rules, as specified in the European specifications and the ASCE, are highly conservative for square and rectangular cold-formed concrete-filled normal-strength stainless steel stiffened stub columns.  相似文献   

12.
This paper presents a finite element analysis (FEA) modeling to study the flexural performance of rectangular concrete filled steel tubular (CFST) members with compact, non-compact or slender element sections. Seventy test results are used to verify the FEA modeling. Generally good agreements were achieved in the ultimate bending capacity and the curvilinear trends of the moment versus mid-span deflection relations of the composite member between the experimental results and the FEA results. The FEA modeling is then used to investigate the residual failure patterns of the core concrete, the typical residual deformations of outer steel tube and the stress and strain distributions across the composite section in the whole loading procedure. Analysis results show that interaction of steel and concrete in the composite beam offers stress redistribution in steel and concrete which makes the rectangular CFST beam have high flexural capacity and ductility. Finally, the reliability analysis method is used to calibrate the existing design formulae on composite beam in EC4 (2004), AISC (2010) and DBJ/T13-51-2010 (2010). It was found that all the design formulae achieved adequate reliability index.  相似文献   

13.
This paper describes a test program on cold-formed lean duplex stainless steel columns compressed between pinned ends. Two square hollow sections and four rectangular hollow sections were tested at different column lengths. The material properties of the test specimens were obtained from tensile coupon tests and stub column tests. The test specimens were cold-rolled from flat strips of lean duplex stainless steel (EN1.4162). The column specimens were concentrically loaded between pinned ends. The ultimate loads and the failure modes of each column are presented. The American, Australian/New Zealand and European specifications for stainless steel structures are assessed by comparing the column test strengths and available data in the literatures with the design strengths. It should be noted that these specifications do not cover the material of lean duplex stainless steel. A reliability analysis was carried out to assess the current design rules of stainless steel for lean duplex material. Generally, the specifications are able to predict the strengths of the tested columns. The design approach of using full cross-section area and material properties obtained by stub column tests for all classes of sections including slender sections was recommended. This recommended design approach does not require section classification and calculation of effective area, and provides a more accurate and less scattered prediction than those using the current design rules.  相似文献   

14.
A concrete-filled stainless steel–carbon steel tubular (CFSCT) column is introduced as a new form of composite member in this paper, which is believed to achieve higher corrosion resistance, higher bearing capacity and lower cost by combination the advantages of stainless steel and concrete filled steel tube (CFST) structure. A series of compression test was carried out on this newly proposed composite column. A modified stress–strain model for concrete core was proposed and then three-dimensional nonlinear finite-element (FE) models were established and verified with the experimental results. Close agreement was achieved between the test and numerical results in terms of load–deformation responses. A parametric study, including tube thickness, diameter and yield strength of carbon steel tube was also conducted to give a clear insight on the performance such composite columns.  相似文献   

15.
This paper describes an accurate finite element model for the structural performance of cold-formed high strength stainless steel columns. The finite element analysis was conducted on duplex stainless steel columns having square and rectangular hollow sections. The columns were compressed between fixed ends at different column lengths. The effects of initial local and overall geometric imperfections have been taken into consideration in the finite element model. The material nonlinearity of the flat and corner portions of the high strength stainless steel sections were carefully incorporated in the model. The column strengths and failure modes as well as the load-shortening curves of the columns were obtained using the finite element model. Furthermore, the effect of residual stresses in the columns was studied. The nonlinear finite element model was verified against experimental results. An extensive parametric study was carried out using the verified finite element model to study the effects of cross-section geometries on the strength and behaviour of cold-formed high strength stainless steel columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The results of the parametric study showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally conservative for cold-formed high strength stainless steel square and rectangular hollow section columns, but unconservative for some of the short columns.  相似文献   

16.
Experimental and numerical investigation of cold-formed lean duplex stainless steel flexural members is presented in this paper. The test specimens were cold-rolled from flat plates of lean duplex stainless steel with the nominal 0.2% proof stress of 450 MPa. Specimens of square and rectangular hollow sections subjected to both major and minor axes bending were tested. A finite element model has been created and verified against the test results using the material properties obtained from coupon tests. It is shown that the model can accurately predict the behaviour of lean duplex stainless steel flexural members. An extensive parametric study was carried out using the verified finite element model. The test and numerical results as well as the available data on lean duplex beams are compared with design strengths predicted by various existing design rules, such as the American Specification, Australian/New Zealand Standard, European Code and direct strength method for cold-formed stainless steel. Reliability analysis was performed to evaluate the reliability of the design rules. It is shown that these current design rules provide conservative predictions to the design strengths of lean duplex stainless steel flexural members. In this study, modified design rules on the American Specification, Australian/New Zealand Standard, European Code and direct strength method are proposed, which are shown to improve the accuracy of these design rules in a reliable manner.  相似文献   

17.
This paper describes the numerical investigation of cold-formed stainless steel tubular T-joints, X-joints and X-joints with chord preload using finite element analysis. The stainless steel joints were fabricated from square hollow section (SHS) and rectangular hollow section (RHS) brace and chord members. The geometric and material nonlinearities of stainless steel tubular joints were carefully incorporated in the finite element models. The joint strengths, failure modes as well as load-deformation curves of stainless steel tubular joints were obtained from the numerical analysis. The nonlinear finite element models were calibrated against experimental results of cold-formed stainless steel SHS and RHS tubular T- and X-joints. Good agreement between the experimental and finite element analysis results was achieved. Therefore, an extensive parametric study of 172 T- and X-joints was then carried out using the verified finite element models to evaluate the effects of the strength and behaviour of cold-formed stainless steel tubular joints. The joint strengths obtained from the parametric study and tests were compared with the current design strengths calculated using the Australian/New Zealand Standard for stainless steel structures, CIDECT and Eurocode design rules for carbon steel tubular structures. Furthermore, design formulae of cold-formed stainless steel tubular T- and X-joints are proposed. A reliability analysis was performed to assess the reliability of the current and proposed design rules. It is shown that the design strengths calculated using the proposed equations are generally more accurate and reliable than those calculated using the current design rules.  相似文献   

18.
《钢结构》2011,(3):76-84,72
采用有限元方法,对冷弯不锈钢方管、矩形管支撑和弦杆中的T型、X型及预应力X型节点进行数值分析。考虑几何非线性和材料非线性,获得节点承载力、破坏模式及荷载-位移曲线。利用试验结果,对T型、X型矩形管、方管节点的非线性有限元模型进行修正,直到有限元结果和试验结果足够吻合。采用修正后的有限元模型对172个T型、X型节点进行参数分析,研究冷弯不锈钢管节点强度和性能的影响。将数值分析和试验中获得的节点承载力与按规范计算的设计承载力进行对比。对不锈钢管结构,采用澳大利亚规范、新西兰规范计算;对碳素钢管结构,采用国际管结构发展与研究委员会设计规范和欧洲设计规范计算。通过可靠性分析,分别评价本文提出的设计方法和现有规范的可靠度。结果表明:采用本文方法计算的设计承载力更准确、更可靠。  相似文献   

19.
Ben Young  Wing-Man Lui 《Thin》2006,44(2):224-234
The paper describes a test program on cold-formed high strength stainless steel compression members. The duplex stainless steel having the yield stress and tensile strength up to 750 and 850 MPa, respectively, was investigated. The material properties of the test specimens were obtained from tensile coupon and stub column tests. The test specimens were cold-rolled into square and rectangular hollow sections. The specimens were compressed between fixed ends at different column lengths. The initial overall geometric imperfections of the column specimens were measured. The strength and behaviour of cold-formed high strength stainless steel columns were investigated. The test strengths were compared with the design strengths predicted using the American, Australian/New Zealand and European specifications for cold-formed stainless steel structures. Generally, it is shown that the design strengths predicted by the three specifications are conservative for the cold-formed high strength stainless steel columns. In addition, reliability analysis was performed to evaluate the current design rules.  相似文献   

20.
This paper presents a comparative study between stiffened and unstiffened concrete-filled stainless steel hollow tubular stub columns using the austenitic stainless steel grade EN 1.4301 (304). Finite element analysis of concrete-filled stainless steel unstiffened tubular stub columns is constructed herein based on the confined concrete model recently available in the literature. It is then compared with the experimental results of concrete-filled stainless steel stiffened tubular stub columns. The stiffened stainless steel tubular sections were fabricated by welding four lipped angles or two lipped channels at the lips. The longitudinal stiffener of the column plate was formed to avoid shrinkage of the concrete and to act as a continuous connector between the concrete core and the stainless steel tube. The behavior of the columns was investigated using two different nominal concrete cubic strengths of 30 and 60 MPa. The overall depth-to-width ratios (aspect ratio) varied from 1.0 to 1.8. The depth-to-plate thickness ratio of the tube sections varied from 60 to 90. The stiffened and unstiffened concrete-filled stainless steel tube specimens were subjected to uniform axial compression over the concrete and stainless steel tube to force the entire section to undergo the same deformations by blocking action. The ABAQUS 6.6 program, as a finite element package, is used in the current work. The results of the comparative study showed that the stainless steel tubes in stiffened concrete-filled columns offered a high average of increase in the confinement of the concrete core than that of the unstiffened concrete-filled columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号